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ABSTRACT 

Power System, over the many years, has undergone dramatic revolution both in technological as 

well as structural aspects. With the ongoing growth of the electric utility industry, including 

deregulation in many countries; numerous changes are continuously being introduced to a once 

predictable system. In an attempt to maximally use the transmission system capacities for economic 

transfers, transmission systems are being pushed closer to their stability and thermal limits, with 

voltage instability becoming a major limiting factor. Insufficient reactive power support affects the 

reliable operation of electric power systems leading to voltage collapses as observed by the recent 

2003 blackout. Among the many available solution options, installation of reactive power control 

devices such as MSCs, FACTS devices etc seem more viable. This is a typical long term planning 

problem that needs to consider both steady state as well dynamic condition of the power system after 

severe contingencies and use better informative indices for the planning process.  

A mixed integer programming based algorithm is made use of in this work to develop a 

comprehensive tool to perform a coordinated planning of static and dynamic reactive power control 

devices while satisfying the performance requirements of voltage stability margin and transient 

voltage dip. The systematic planning procedure is illustrated on a large scale case study. The 

effectiveness of the planning algorithm is demonstrated using two separate planning problems, one 

where steady state planning is done exclusively against static voltage stability problems, and the other 

where a coordinated steady state and dynamic Var planning problem is solved.  

The results of this work show the effectiveness of the developed planning tool to find a low cost 

optimal reactive power allocation solution to enable higher real power transfers and improve voltage 

stability. We envision the method developed will be a research grade tool for planning reactive 

control devices against voltage instability and will provide system planners a proper guide to find 

viable and economical planning solutions. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

 

In recent years, a variety of factors such as financial, regulatory, and environmental to mention a 

few, are forcing electric utilities to operate their systems in ways which make maximum use of 

transmission capability. This has lead to the full utilization of transmission facilities for economic 

transfers. Consequently the problem associated with voltage instability or voltage collapse has become 

the limiting constraint for an increasing number of systems, superseding rotor angle stability as the 

primary concern. This is evident from the many major system collapses due to voltage instability 

experienced in by utilities around the world. These network blackouts, which are usually triggered by 

system faults, occur from lack of reactive power support in heavily stressed conditions.  

A number of techniques have been developed to study the problem of voltage instability with the 

growing concern and much industry attention given to investigating this phenomenon. As the 

techniques and tools become more mature, utilities are beginning to include voltage stability analysis as 

part of their routine planning and operation studies. However, well accepted criteria and study 

procedures do not yet exist. Currently, this analysis is mostly done by power flow program based 

simulation of an operating point in time several minutes following a disturbance. However, for practical 

purposes, it is not sufficient to merely understand and analyze voltage collapse mechanisms, but it is 

essential to also seek for effective and economically justified solutions to the problem. In general, 

voltage instability or collapse can be contained in a preventive or a corrective way. The preventive 

control is carried out before voltage instability actually occurs. While the corrective control is to 

stabilize an unstable power system, directing the system trajectory onto a new stable equilibrium point 

shortly after a severe contingency, such as tripping of a heavily loaded transmission line or outage of a 

large generating unit. The corrective control usually relates to system solvability. The work in this 

thesis is an attempt to include dynamic time domain simulation along with static power flow based 
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tools to analyze a large scale system and take appropriate reactive power control actions in an 

economical way to counteract the static as well as dynamic voltage instability problems. 

1.2 Available Solutions 

 

The electric transmission system requires proper long-term planning to strengthen and expand 

transmission capability. Advanced technologies are paramount for the reliable and secure operation of 

power systems so as to accommodate continuously increasing transmission usage and long-distance 

power transactions. However, financial and market forces are, and will continue to, demand a more 

optimal and economical solutions for the power system problems. Some of the basic options for 

strengthening and expanding transmission are building/upgrading new transmission system; building 

new generation at strategic locations; and introducing additional control capabilities. Traditional 

solutions to upgrading the electrical transmission system infrastructure have been primarily in the form 

of new transmission lines, substations, and associated equipment. However, as experiences have 

proven over the past decade or more, the process to permit, site, and construct new transmission lines 

has become extremely difficult, expensive, time-consuming, and controversial [1]. Furthermore, the 

strategic siting of generation for purposes of transmission enhancement experiences hindrance since 

generation and transmission are owned and operated by separate organizations with the 

decentralization of power system market. In any case, if sufficient active power transmission capability 

already exists, further reactive compensation can be shown to be the most cost effective reinforcement 

option. So even though all of the above mentioned options will continue to exist as options in the 

future, the first two options have become less and less viable for addressing voltage security problems. 

There is significantly increased potential for application of additional power system control in order 

to strengthen and expand transmission in the face of growing transmission usage. The incentives for 

doing so are clear: there is little or no right-of-way, and capital investment is much less [2]. Although 

considerable work has been done in planning transmission in the sense of building new transmission 

system or new generation facilities [3], there has been little effort towards planning transmission 
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control. As discussed before, the ability to consider these control devices in the planning process is a 

clear need to the industry [4], [5], [6], [7].  

There are 3 types of control technologies that exist today: generation controls, power-electronic 

based transmission control, and system protection schemes (SPS). Of these, the first two exert 

continuous feedback control action; the third exerts discrete open-loop control action. Most of the 

times in real systems, the characteristics of certain area of the transmission system are such that the 

voltages immediately following a critical outage fall to such a degree that there is a risk of voltage 

collapse. The time delays required to ensure correct operation of SPS (MSC) devices means that they 

cannot be switched quickly enough to improve this aspect of the system voltage behavior. For this 

reason, any additional reactive compensation had to be of the fast responsive power electronics based 

devices. Power electronics based equipment, or Flexible AC Transmission Systems (FACTS), provide 

proven technical solutions to voltage stability problems. Especially, due to the increasing need for fast 

response for power quality and voltage stability, the shunt dynamic Var compensators such as Static 

Var Compensators (SVC) and Static Synchronous Compensators (STATCOM) have become feasible 

alternatives to a fixed reactive source, and therefore have received intensive interests [4]. Since power 

systems are already hybrid [2], and since good solutions may also be hybrid, assessment of control 

alternatives for expanding transmission must include procedures for gauging cost and effectiveness of 

hybrid control schemes. 

1.3 Objective of this Work 

Although a plethora of publications exist that describe voltage phenomena, a comprehensive 

methodology and satisfactory analysis and design tools that address the issue of optimally allocating 

static/dynamic VAR source mix is not readily available. A series of questions have been raised 

frequently by utility planners and manufacturers: what is the right mix, where is the right location and 

what is the right size for the installation of reactive power compensators considering technical and 
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economic needs? Can the models, methods, and tools used for static Var planning be applied in 

dynamic Var planning?  

The objective of this work is to develop criteria for the selection of the optimal mix and 

placement of static and dynamic VAR resources in large power systems with voltage stability 

constraints that answer all the above questions.  

1.4 Organization of this Thesis 

The rest of the thesis is organized as follows: 

In chapter 2, a detailed literature survey of the topics relevant to this project has been presented. 

Definition and various theories of Voltage instability phenomenon have been presented. A brief 

account of secondary effects of voltage instability that lead to major voltage collapse situations is 

given. Then the effective system performance-criteria that are used for voltage stability assessment as 

well as control planning in this work are explained. The chapter also includes a section describing the 

various reactive power sources available that are divided into two types, namely static and dynamic. 

An account of the devices that are considered for this planning work has been given. Importance of 

Var/Voltage planning in today’s environment has been stressed. The last section of the chapter 

includes a detailed literature review of the various works that have been done in the field of reactive 

power planning. The literatures are divided into two parts, namely the first variety that deal will 

steady state reactive power planning, and the second variety that deal with dynamic and coordinated 

static and dynamic Var planning methods.  

In Chapter 3, a detailed account of the control planning tool developed in this project to find the 

optimal allocation of right mix of static and dynamic Var sources has been presented. The planning is 

done such that the proposed control solution, if implemented, should satisfy the minimum 

requirements for the steady state post contingency voltage stability margin and transient voltage dips. 

The chapter includes details of what device models a voltage stability base case should contain, what 
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tools are used to assess the voltage stability of a power system for both steady state as well as 

dynamic system conditions, and how the performance indices that reflect the status of the system with 

respect to voltage stability are calculated. Then the important process of contingency analysis is 

explained. The last section of the chapter gives a detailed account of the control planning algorithm 

that has been used in this project. The control planning algorithm, which is basically a mixed-integer 

programming problem addresses three different planning problems. One corresponds to planning 

against steady state post contingency voltage instability, one corresponds to increasing the post 

contingency steady state voltage stability margin beyond certain minimum criteria as per the 

standards, and the last one corresponds to a coordinated planning of static and dynamic Var sources in 

order to satisfy minimum requirements for steady state voltage stability margin as well transient 

voltage dips. The developed planning tool was applied to a large-scale system. 

In chapter 4, the results of the developed planning tool have been included. The chapter contains 

a description of the large-scale system and the process of obtaining the critical contingency list for the 

focus area of the system. Then the chapter gives a detailed account of each step involved in the 

comprehensive planning process leading to a final optimal solution. Two sets of solutions have been 

presented. The first one is for the planning problem against steady state voltage stability problem with 

purely static solution. The second problem deals with the coordinated static and dynamic solution for 

steady state as well transient voltage problems in the system. The obtained lowest cost solution was 

validated for its effectiveness. 

Chapter 5 contains conclusion and scope for further improvement of the planning tool developed 

in the near future.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Voltage Stability: Introduction 

Over the past few decades, a greater importance has been felt to recognize Power System 

Stability issues for secure system operation. A major section of researchers have put onus on clearly 

understanding the different types of instability and how they are interrelated, as these stability 

problems can lead to system failure [8].  So in this context, it is essential to clearly define these 

stability problems, and have a consistent use of terminology for developing satisfactory system design 

and operating criteria, standard analytical tools, and study procedures. With this vision a Task Force, 

set up jointly by the CIGRE Study Committee 38 and the IEEE Power System Dynamic Performance 

Committee, addressed the issue of stability definition and classification in power systems from a 

fundamental viewpoint and closely examined the practical ramifications [9]. The report classified 

Power System Stability as shown in Figure 2.1. 

 

 

Figure 2.1 Classification of power system stability [9] 
 

• Rotor angle stability refers to the capability of synchronous machines in an 

interconnected power system to remain in synchronism subjected to a disturbance. 

• Voltage stability refers to the capability of a power system for maintenance of steady 

voltages at all buses in the system subjected to a disturbance under given initial operating 

conditions. 
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• Frequency stability refers to the capability of a power system for maintenance of steady 

frequency following a severe system upset resulting in a significant imbalance between 

generation and load. 

According to that report, as power systems evolved through continuous growth in 

interconnections with increased operation in highly stressed conditions and use of new technologies 

and control, the historical focus on transient stability is being shifted to many different forms of 

system stability issues that have emerged such as frequency stability , voltage stability etc. However, 

voltage instability has been a major cause of several recent major power outages worldwide [8], [10], 

and it was one of several problems that led to the August 2003 blackout in the eastern US. 

The same report [9] defines a voltage collapse as being the process by which voltage instability 

leads to a very low voltage profile in a significant part of the system. A voltage collapse may occur 

rapidly or more slowly, depending on the system dynamics. It may be caused by a variety of single or 

multiple contingencies. These may be the sudden removal of generation or a transmission element (a 

transformer or a transmission line), an increase of load without an adequate increase of reactive power, 

or the slow clearing of a system fault. Voltage collapse is more likely when transmission lines are 

heavily loaded.  

2.2 Voltage Instability/Collapse: Theories  

Several theories have been proposed to understand the mechanism of voltage instability. Voltage 

instability leading to collapse is system instability in that it involves many power system components 

and their variables at once. There are several system changes that can contribute to voltage collapse 

[11] such as increase in loading, generators or SVC reaching reactive power limits, action of tap 

changing transformers, load recovery dynamics and line tripping or generator outages. Most of the 

above mentioned system changes have a large effect on reactive power production or transmission. 

To discuss voltage collapse some notion of time scales is needed that accounts for fast acting 
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variables of time scales of the order of seconds such as induction motors, SVCs to slow acting 

variables having long term dynamics in hours such as LTCs, load evolution etc. 

A major factor contributing to voltage instability is the voltage drop that occurs when active and 

reactive power flow through inductive reactance of the transmission network; which limits the 

capability of the transmission network for power transfer and voltage support [9]. The power transfer 

and voltage support are further limited when some of the generators hit their field or armature current 

time-overload capability limits. Voltage stability is threatened when a disturbance increases the 

reactive power demand beyond the sustainable capacity of the available reactive power resources. 

The driving force for voltage instability is usually the loads. In response to a disturbance, power 

consumed by the loads tends to be restored by the action of motor slip adjustment, distribution voltage 

regulators, tap-changing transformers, and thermostats. Restored loads increase the stress on the high 

voltage network by increasing the reactive power consumption and causing further voltage reduction. A 

run-down situation causing voltage instability occurs when load dynamics attempt to restore power 

consumption beyond the capability of the transmission network and the connected generation. The 

above discussed phenomenon is a typical case caused by a cascade of power system changes.  

The publication [12] provides a description of several factors that affect the mechanism of a voltage 

collapse. These factors are examined for a simple power system with its actual PV curves, shown in 

Figure 2.2, to briefly explain the voltage collapse phenomenon. It can be seen from this figure that, for 

a particular system and loads considered, the normal system can be stable with both resistive and motor 

loads at points where load curves and system curves intersect. However, when the system becomes 

stressed, with increased system reactance, it can only have a stable operating point with a resistive load. 

There is no intersection of system and load curves for the motor load since there is no stable operating 

point. 
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Figure 2.2 Stable and Unstable System Load Characteristics [12] 
 

The above discussions give a physical sense of what the problem of voltage instability is, and shed 

importance on the requirement of good study techniques and models. It is recognized that the problem 

of low voltage and that of voltage stability is not the same, as the system can be still susceptible to 

voltage instability in spite of good pre-contingency and post-contingency voltage profiles due to 

various other reasons.  

A more detailed explanation of voltage instability in terms of bifurcation theories are given in many 

literatures. Being an inherently nonlinear phenomenon, it is natural to use nonlinear methods such as 

bifurcation theory to consider voltage collapse and to devise ways of avoiding it. The main idea of such 

theories is to analyze the system at the threshold of stability. In [11], [13], a deeper look into bifurcation 

theories like saddle-node bifurcation, Hopf bifurcation and singularity-induced bifurcation are given. 

Such study gives a sense of how the system states like bus voltages, machine angles etc, which vary 
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dynamically during system transients, change with respect to slow or gradual changes in system 

parameters like real power demands at system buses, which changes the system equations used. They 

also discuss how corrective/preventive measures can be devised. 

2.3 Secondary Effects of Voltage Sag leading to Collapse 

If the voltage drops to a point where some motors stall, the reactive power requirement increases 

quickly, and the rate of voltage decline can accelerate catastrophically [14], [15], [16]. Heavily loaded 

transmission lines during low voltage conditions can result in operation of protective relays causing 

other lines to trip in a cascading mode. A common scenario is a large disturbance such as a multi-phase 

fault near a load center that decelerates motor loads. Following fault clearing with transmission 

outages, motors draw very high current while simultaneously attempting to reaccelerate, and may stall 

if the power system is weak. Massive loss of load and possibly area instability and voltage collapse may 

follow. Investigating system response from the planning stage is vital to prevent a voltage collapse. A 

typical voltage recovery phenomenon following a disturbance is indicated in Figure 2.3. 
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Figure 2.3 Possible Behavior of Voltage Recovery after a Disturbance [15] 
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There are several works [17] that have documented many short-term (few seconds) voltage 

collapse incidents with loss of load that have occurred in recent years. In all cases, adequate dynamic 

reactive power support was not available which resulted in a large loss of load.  

2.4 Voltage Stability Planning Tools/Criteria 

Concerns for voltage instability and collapse are prompting utilities to better understand the 

phenomenon so as to devise effective, efficient and economic solutions to the problem. Traditionally, 

voltage stability investigations have been based on steady-state analyses, using the power flow model. 

The system P-V curve and/or the sensitivity information derived from the power flow jacobian have 

been used to explain the basic concepts, and develop definitions and tests, of voltage stability. But the 

realization that voltage stability is a dynamic phenomenon has led to dynamic formulations of the 

problem and application of the dynamic analysis tools. It has been identified that the important issue is 

the modeling requirement and modeling adequacy of the various system components. Voltage stability 

is largely determined by load characteristics and the available means of voltage control. Motor loads are 

particularly hazardous from the viewpoint of voltage stability and require special consideration. The 

response speeds of these loads may be comparable to the speed of response of the voltage control 

equipment. A detailed modeling of their dynamic behavior along with that of the relevant voltage 

controls may, therefore, be necessary.  

In this work, we focus on planning for systems only having the voltage stability problem. The 

proposed planning approach can be extended to consider other stability/security problems as well. In 

order to effectively plan against such stability problems, we need to identify proper performance 

criteria. Planning power systems is invariably performed under the assumption that the system is 

designed to maintain stability under a certain set of contingencies. There is currently a 

disturbance-performance table within the NERC (North American Electric Reliability 

Corporation)/WECC (Western Electricity Coordinating Council) planning standards [18] which 
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provides minimum post-disturbance performance specifications for credible events. The 

post-disturbance performance criteria regarding voltage stability include: 

• Minimum post-contingency voltage stability margin; 

• Minimum transient voltage-dip criteria (magnitude and duration). 

The rest of this section will introduce voltage stability margin and transient voltage dip. Voltage 

stability margin is defined as the amount of additional load in a specific pattern of load increase that 

would cause voltage instability as shown in Figure 1.2. The potential for contingencies such as 

unexpected component (generator, transformer, transmission line) outages in an electric power system 

often reduces the voltage stability margin [9], [19], [20]. 

Figure 2.4 shows the voltage stability margin under different operating conditions and controls.  

 

Figure 2.4 Voltage stability margin under different conditions [2] 

 Note that severe contingencies may cause the voltage stability margin to be negative (i.e. voltage 

instability). A power system may have the minimum post-contingency voltage stability margin 

requirement. For example, the NERC/WECC voltage stability criteria require that  

• The post-contingency voltage stability margin must be greater than 5% for N-1 
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contingencies; 

• The post-contingency voltage stability margin must be greater than 2.5% for N-2 

contingencies; 

• The post-contingency voltage stability margin must be greater than 0% for N-3 

contingencies. 

The above mentioned criterion equally applies to the system with all elements in service and the 

system with one element removed and the system readjusted. Appropriate power system control 

devices can be used to increase the voltage stability margin.  

On the other hand, transient voltage dip is a temporary reduction of the voltage at a point in the 

electrical system below a threshold [14]. It is also called transient voltage sag. Excessive transient 

voltage dip may cause fast voltage collapse [7], [17]. In [21], it is stated that the needs of the industry 

related to voltage dips/sags for power system stability fall under two main scenarios. One is the 

traditional transient angle stability where voltage “swing” (i.e., dip/sag) during electromechanical 

oscillations is the concern. The other is “short-term” voltage stability generally involving voltage 

recovery following fault clearing where there is no significant oscillations, for which much greater load 

modeling detail is required with the fault applied in the load area rather than near generation. The two 

scenarios are different enough that a single criterion for angle stability voltage swing dip and for 

short-term voltage stability may not be appropriate. In [17], it is stated that many planning and 

operating engineers are insufficiently aware of potential short-term voltage instability, or are unsure on 

how to analyze the phenomena. Reliability criteria often does not address short -term voltage stability. 

In this work, we focus on the transient voltage dip after a fault is cleared. 

In [21], information on transient voltage dip criteria following fault clearing related to power 

system stability was provided. Information was included from utilities, reliability councils, relevant 

standards, and industry-related papers. The WECC criteria on transient voltage dip are summarized in 

the following and will be used to illustrate the proposed control planning approach. The WECC 
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transient voltage dip criteria are specified in a manner consistent with the NERC performance levels 

of (A) no contingency, (B) an event resulting in the loss of a single element, (C) event(s) resulting in 

the loss of two or more (multiple) elements, and (D) an extreme event resulting in two or more 

(multiple) elements removed or cascading out of service conditions, as follows: 

• NERC Category A: Not applicable. 

• NERC Category B: Not to exceed 25% at load buses or 30% at non-load buses. Not exceed 

20% for more than 20 cycles at load buses. 

• NERC Category C: Not to exceed 30% at any bus. Not to exceed 20% for more than 40 

cycles at load buses. 

• NERC Category D: No specific voltage-dip criteria. 

The figure 2.5 below shows the WECC voltage performance parameters with the transient voltage 

dip criteria clearly illustrated [22]. Again, appropriate power system controls can be utilized to 

mitigate the post-contingency transient voltage dip problem. 

 

Figure 2.5 Voltage performance parameters for NREC/WECC planning standards [18] 
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It is mentioned in [23] that all the voltage stability criteria developed are mainly deterministic 

criteria. The Performance Levels used have been prepared based on historical average frequency of 

outages of various elements. It is perceived that establishment of voltage stability criteria is an 

evolutionary process that will require changes and enhancements as more experience is gained. 

Currently WECC is in the process of establishing probabilistic criteria which is directly related to the 

frequency and duration of outages. References [24], [25] are few efforts where the objective is to 

provide a risk-based approach to security assessment for a voltage stability constrained power system 

that are commensurate with the corresponding level of risk. 

The voltage stability of a power system is greatly dependent upon the amount, location and type of 

reactive power sources available. If the reactive power support is far away, insufficient in size, or too 

dependent on shunt capacitors, a relatively normal contingency (such as a line outage or a sudden 

increase in load) can trigger a large system voltage drop. Hence there must be a proper allocation of 

reactive power support to support the power system under stressed conditions. Gradually, the 

importance of the VAR/voltage control planning problem has been felt. 

2.5 VAR/Voltage Control  

There are primarily three main variables that can be directly controlled in the power system to impact 

its performance. These are Voltage, Angle & Impedance [1]. One could also make the point that direct 

control of power is a fourth variable of controllability in power systems. With the establishment of “what” 

variables can be controlled in a power system, the next question is “how” these variables can be controlled. 

Several options are available to prevent voltage instability. Fast under-voltage load shedding (approximately 

one second time delay) is an option, but many residential air conditioner motors may still stall [12], [17]. 

Network reinforcements include new lines and transformers etc. But a number of studies done on the cost 

benefit analysis of investment on Reactive power control strategies and transmission re-enforcements over 

certain planning period do show that in most common cases reactive power control strategies look a viable 

and effective option [26], [27], [28]. The available reactive power control devices can be divided into two 
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parts: namely conventional equipment and FACTS controller.  

a) The Conventional equipments for enhancing Power system Control [1]: 

• Series Capacitor (Controls impedance),  

• Switched Shunt-Capacitor (MSC) and Reactor (Controls voltage),  

• Transformer LTC (Controls voltage),  

• Phase Shifting Transformer (Controls angle),  

• Synchronous Condenser (Controls voltage),  

• Special Stability Controls (voltage control but can often include direct control of 

power),  

• Others (When Thermal Limits are involved) include re-conductoring, raising 

conductors, dynamic line monitoring, adding new lines, etc.  

These devices are also called System protection schemes (SPS). MSCs have been used for 

post-contingency control [29], [30], [31], [32], [33]. 

b) The FACTS controllers for enhancing Power system Control [1], [26]:   

• Static Synchronous Compensator (STATCOM) (Controls voltage),  

• Static Var Compensator (SVC) (Controls voltage),  

• Unified Power Flow Controller (UPFC),  

• Convertible Static Compensator (CSC), 

• Inter-phase Power Flow Controller (IPFC),  

• Static Synchronous Series Controller (SSSC) (voltage, impedance, angle and power),  

• Thyristor Controlled Series Compensator (TCSC) (Controls impedance),  

• Thyristor Controlled Phase Shifting Transformer (TCPST) (Controls angle), 

• Super Conducting Magnetic Energy Storage (SMES) (Controls voltage and power) 

These are Power-electronic based transmission control devices [34]. 

The key to solving transmission system problems in the most cost-effective and coordinated 
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manner is by employing a thorough systems analysis. This includes comparing the system benefits 

available by conventional equipment and from FACTS controllers. The conventional equipment exerts 

discrete open-loop control action; the FACTS controllers exert continuous feedback control action. 

While both static and dynamic Var resources belong to reactive (power) control devices, based on the 

response time, SVC and TCSC are often called dynamic Var resources, and MSC belongs to static Var 

resources. SVC and TCSC are effective countermeasures to increase voltage stability margin and to 

counteract transient voltage dip problems. However, much cheaper MSC is often sufficient for 

increasing voltage stability margin [32]. In the MSC family, mechanically switched shunt capacitors 

are usually cheaper than mechanically switched series capacitors while their effectiveness depends on 

characteristics of power systems. 

As mentioned, SVC and TCSC can effectively mitigate transient voltage dip problems since they 

can provide almost instantaneous and continuously variable reactive power in response to grid voltage 

transients. In [1] it is shown that the speed of mechanical switches for conventional equipment 

solutions can be as fast as a couple of cycles of 60 (or 50) Hz. This speed of switching in itself may be 

fast enough to solve many power system constraints. Although there is a vast improvement in switching 

time from mechanical to power electronic based solutions (Figure 2.6 illustrates that the speed of power 

electronics switches is a fraction of a cycle), the main benefit that FACTS controller solutions provide 

is the “cycling/repeatability” and “smooth control” that accompanies the power electronic based 

switching. In other words, a mechanically switched based (conventional) solution is usually a “one and 

done” or “on or off” impact to the power system in the time frame needed for power system stability, 

whereas the power electronic based solution can provide a smooth, continuous, and/or repeatable 

option for power system control.  
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Figure 2.6 Illustration of the speed of power system control [1] 
 

A cost comparison of static and dynamic Var resources is presented in Table 2.7 [20], [28], [35], 

[36]. The final selection of a specific reactive power control devices should be based on a 

comprehensive technical and economic analysis.  

Table 2.1 Cost comparison for reactive power control devices 
 

Static Var Dynamic var 

 Mechanically switched 

shunt capacitor 

Mechanically switched 

series capacitor 
SVC TCSC 

Variable cost 

($ million/100 MVar) 
0.41 0.75 5.0 5.0 

Fixed cost ($ million) 1.3 2.8 1.5 1.5 

 

The advantages achieved in the overall control planning can be qualitatively realized through 

metrics like effective use of transmission corridors, improved power system stability, reliability and 

system security, flexibility in siting new generation, elimination or deferral of the need for new 

transmission etc. However, for justifying the costs of implementing added power system control and for 

comparing conventional solutions to FACTS controllers, more specific metrics of the benefits to the 
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power system are often required that can quantify the advantages of control planning. Such metrics 

include Transient Stability Criteria, Power System Oscillation Damping (Minimum damping ratio), 

long term Voltage Stability Criteria such as minimum voltage collapse margins and Q-V reactive power 

criteria with minimum margins, short term Dynamic Voltage Criteria such as minimum transient 

voltage dip/sag criteria (Magnitude and duration) etc. 

Each of the above-listed items can usually be measured in terms of a physical quantity such as 

power transfer through a critical transmission interface, power plant output, and/or area or region load 

level as discussed in the previous section. This allows for a direct quantification of the benefits of 

adding power system control and provides a means to compare such benefits by the various solution 

options considered, whether they are conventional or FACTS based. As mentioned earlier our study is 

limited to planning against voltage instability problems. So the criteria for long term and short term 

voltage stability problems are only considered for planning. The problem of finding the optimal 

allocation of static and dynamic Var sources belongs to the Reactive Power Planning (RPP) or Var 

planning category. 

2.6 Reactive Power Control Planning  

Reactive power planning (RPP) involves optimal allocation and determination of the types and 

sizes of the installed Var compensators to cover normal, as well as, contingency conditions. The 

planning process aims at providing the system with sufficient Var compensation to enable the system 

to be operated under a correct balance between security and economic concerns. In [37] detailed 

information on how reactive power planning problem is typically formulated along with many 

computational techniques to solve the problem is given. Traditionally, the locations for placing new 

Var sources were either simply estimated or directly assumed by engineering judgment. However in 

this work, we propose to develop an optimization methodology for selecting the optimal size and 

placement of static as well as dynamic VAR sources for a specific system, which is a typical long term 

planning problem. Rigorous solution to this problem is extremely complex because of its large 
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solution space, large number of contingencies, difficulty in evaluating the performance of candidate 

solutions, and lack of efficient mathematical solution techniques [38]. 

Essentially, Reactive Power control strategy is a large-scale mixed integer nonlinear optimization 

with a large number of variables and uncertain parameters. Solution techniques have evolved over 

many years. There are no known ways to solve such Nonlinear Programming Problems (NLP) exactly 

in a reasonable time. Generally, the reactive power planning problem can be formulated as a mixed 

integer nonlinear programming problem to minimize the installation cost of reactive power devices 

plus the system real power loss or production cost under the normal and contingency conditions 

subject to a set of power system equality and inequality constraints. Initially, due to lack of proper 

knowledge of voltage instability mechanism, as well as lack of good models of dynamic Var devices, 

Var re-enforcements were restricted to capacitor placement problem. In many cases capacitor 

placement was done to improve the voltage profile under normal and contingency cases [39]. Then as 

and when it was found that voltage stability problems are quite different from that of system low 

voltage problems, many literatures focused on Var planning in terms of capacitor allocation problems 

to mitigate voltage stability problem using new power system voltage stability indices. There were 

many literatures with proposals on new and better computational techniques to solve the reactive 

power planning problem, which can be broadly classified into conventional methods such as 

Generalized Reduced Gradient (GRG), Newton’s Approach, and Successive Quadratic Programming 

(SQP) etc, and heuristic methods such as Simulated Annealing (SA), Genetic Algorithms (GA), and 

Tabu Search (TS) etc [40]. Later with the advent of FACTs devices, and better modeling and 

computational techniques, reactive power planning included allocation of both static and fast acting 

dynamic devices to mitigate voltage stability problem, while the performance measures or criteria 

considered were still static. Then with the growing awareness of short term voltage stability issues 

like voltage dips/sags, dynamic stability criteria were also included in the planning of reactive power 

compensation for power system voltage stability.  
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There are a few references which address static VAR planning to increase voltage stability margin. 

Obadina et. al. in [41] developed a method to identify reactive power control that will enhance 

voltage stability margin. The RPP problem was formulated in two stages. The first stage involved a 

nonlinear optimization problem which minimizes the amount of reactive supply. The solution of the 

first stage is the minimum amount of VARs that needs to be installed in order to satisfy voltage levels 

and the security constraint. The second stage employed a mixed-integer linear program to minimize the 

number of VAR supply locations while maintaining system voltages within specified limits, and 

maintaining a security margin greater than (or equal to) security margin specified. The planning 

procedure also considers contingencies, where the most severe contingency case with the smallest 

value of security margin was chosen. The work in [42] introduces the application of genetic based 

algorithm in reactive power planning problem to find optimal allocation of capacitors to solve voltage 

instability issues. The work brings out the effectiveness of genetic algorithm in RPP and suggests the 

use of sensitivity information from the CPF to plan against voltage collapse. The method developed in 

[43] uses a knowledge and algorithm-based approach to VAR planning in a transmission system. This 

heuristic VAR Planning method involves two intelligent modules to determine locations and sizes of 

new compensators considering contingencies and voltage collapse problems in a power system. An 

expert system module analyzes the operating conditions of a power system and suggests one or more of 

the P-V. Q-V and S-V curves for use in assessing the voltage collapse problem. A second expert system 

module suggests control actions with the existing VAR controllers, their sizes and locations for the 

installation of new compensators. In [44], the effect of static compensation on voltage stability 

boundary was investigated. A typical class of voltage instability cases which correspond to static 

bifurcations of power flow equations was considered. For these cases minimum singular values of 

Jacobian matrix and total generated reactive power were calculated as indicators of stability margin, 

and sensitivity methods were used for static shunt reactive support allocation. Ajjarapu, et. al. in [45] 

introduced a method of identifying the minimum amount of shunt reactive power support which 
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indirectly maximizes the real power transfer before voltage collapse is encountered. A relaxation 

strategy that operates with a predictor-corrector optimization scheme was utilized to determine the 

maximum system loading point. The sensitivity of the voltage stability index derived from the 

continuation power flow (CPF) was used to select weak buses to locate shunt reactive power devices. 

A sequential quadratic programming algorithm was adopted to solve for the optimization problem 

with the objective function as minimizing the total reactive power injection at the selected weak buses.  

Overbye et. al. in [46] address the practical problem of power flow cases which have no real solution, 

proposed an algorithm for determining the best control allocation to restore such cases to solvability. 

The degree of un-solvability of a power system case was quantified using the distance in parameter 

space between the desired operating point and the closest solvable point. The sensitivities of this 

measure to system controls were then used to determine the best control actions to restore the case to 

solvability. The dynamic consequences of loss of solution should the severe contingency occur, and the 

maximum allowable time frame for control intervention were also calculated using energy methods. 

Chen, et. al. in [47] presented a weak bus oriented reactive power planning to counteract voltage 

collapse. The algorithm identifies weak buses by right singular vector of the power flow Jacobian 

matrix. Then the identified weak buses are selected as candidate shunt reactive power control 

locations. The smallest singular value is used as the voltage collapse proximity index. The 

optimization problem is formulated to maximize the minimum singular value. Simulated annealing is 

applied to search for the final optimal solution. Chang, et. al. in [48] presented a hybrid algorithm 

based on simulated annealing, the Lagrange multiplier, and the fuzzy performance index method for 

optimal reactive power control allocation. The proposed procedure has three identified objectives: 

maximum voltage stability margin, minimum system real power loss, and maximum voltage 

magnitudes at critical points. The work in [49] presents a genetic-algorithm (GA) based method to 

determine the optimal siting of Flexible AC Transmission System (FACTS) controller. It was quoted 

that the advantage of GA is the solving ability of multi-objective problem. However, the drawback is 
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the time consuming problem for large system. In [50], a new and comprehensive method for optimal 

reactive power planning (ORPP) against voltage collapse is given. The problem has the objectives of 

optimally siting and sizing new capacitors at prospective locations such that the transmission loss is 

minimized, an acceptable voltage profile is obtained, and the voltage stability is improved. To plan 

against collapse, modal analysis is used to generate a participation-factor-based voltage collapse 

sensitive index (VCSI). VCSI is used to rank and select the best few prospective buses to site new 

capacitors. Using fuzzy models, all the violated load bus voltage constraints are fuzzified and their 

enforcements are maximized. The nonlinear programming problem of ORPP is solved in the successive 

multi-objective fuzzy LP framework.  In [51], a new methodology for fast determination of optimal 

location of SVC based on system loadability and contingency analysis is presented. Continuation 

power flows combined with Eigen value analysis of power system were used as tools for choosing the 

location of SVC based on the loading margin. To value the effect of contingencies on the performance 

of the system a new index in terms of voltage stability margin was proposed. The effectiveness of the 

placement of SVC was also obtained in terms of similar index. To analyze the response of different 

systems without considering the cost of SVC, a norm was proposed. This norm compared the 

performance of power systems based on loadability margin, contingencies and “flatting” of voltage 

profiles. Vaahedi, et. al. in [52] evaluated the existing optimal VAR planning/OPF tools for voltage 

stability constrained reactive power control planning. A minimum cost reactive power support scheme 

was designed to satisfy the minimum voltage stability margin requirement given a pre-specified set of 

candidate reactive power control locations. The problem formulation does not include the fixed VAR 

cost. The obtained results indicated that OPF/VAR planning tools can be used to address voltage 

stability constrained reactive power control planning. Additional advantages of these tools are: easier 

procedures and avoidance of engineering judgment in identifying the reactive power control amount 

at the candidate locations. Xu, et. al. in [53] used conventional power flow methods to assess the 

voltage stability margin. The methods scale up entire system load in variable steps until the voltage 
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instability point is reached. The modal analysis of power flow Jacobian matrix was used to determine 

the most effective reactive power control sites for voltage stability margin improvement. Mansour, et. 

al. in [54] presented a tool to determine optimal locations for shunt reactive power control devices. 

The tool first computes the critical modes in the vicinity of the point of voltage collapse. Then system 

participation factors are used to determine the most suitable sites of shunt reactive power control 

devices for transmission system reinforcement.  Granville, et. al. in [55] described an application of 

an optimal power flow [56], solved by a direct interior point method, to restore post-contingency 

equilibrium. The set of control actions includes rescheduling of generator active power, adjustments 

on generator terminal voltage, tap changes on LTC transformers, and minimum load shedding. Feng, 

et. al. in [57] identified reactive power controls to increase voltage stability margin under a single 

contingency using linear programming with the objective of minimizing the control cost. This 

formulation is suitable to the operational decision making problem. The fixed cost of new controls is 

not included in the formulation. Yorino, et. al. in [58] proposed a mixed integer nonlinear 

programming formulation for reactive power control planning which takes into account the expected 

cost for voltage collapse and corrective controls. The Generalized Benders Decomposition technique 

was applied to obtain the solution. The convergence of the solution can not be guaranteed because of 

the non-convexity of the optimization problem. The proposed model does not include the minimum 

voltage stability margin requirement. The work done in [59] proposes two effective ways to increase 

the voltage stability margin of power systems by finding optimal allocation of shunt and series reactive 

power compensation. This work proposes a methodology of locating switched shunt and series 

capacitors to endow them with the capability of being reconfigured to a secure configuration under a set 

of prescribed contingencies. A new method based on forward/backward search on a graph representing 

discrete configuration of switches is used to find optimal locations of new switch controls. Specifically, 

the sensitivity of voltage stability margin with respect to susceptance of shunt capacitors and the 

reactance of series capacitors is used in the candidate control location selection. In [33] a new 



www.manaraa.com

 

 

 

25 

optimization based algorithm to plan the minimum amount of switched shunt and series capacitors to 

restore the voltage stability of a power system after severe contingencies was proposed. Through 

parameterization of severe contingencies, the continuation method is applied to find the critical point. 

Then, the backward/forward search algorithm with linear complexity proposed in [59], is used to select 

candidate locations for switched shunt and series capacitors. Next, a mixed integer programming 

formulation is proposed for computing locations and amounts of switched shunt and series capacitors to 

withstand a planned set of contingencies. A linear programming formulation is utilized to further refine 

the compensation amounts. The work in this thesis is based on this approach. 

All the above mentioned literatures deal with static VAR planning to increase voltage stability 

margin. Some of them contributed to the application of new computational techniques in Var planning. 

There is another group of literatures, though very limited, that are about dynamic VAR planning or 

coordinated static and dynamic VAR planning that also addresses transient voltage performance. The 

work in [60] done in 1978, presents one of the earlier attempts to come up with a comprehensive 

planning method for coordinated static and dynamic reactive compensation in power systems so as to 

maintain voltages in acceptable ranges during contingencies. The methodology allows the addition of 

further VAR compensation as may be economically justified. Reactive compensation considered 

consists of conventional shunt reactive compensation, synchronous condensers, as well as variable 

shunt reactive control devices called static VAR control devices. This work combines VAR 

optimization with static as well as with dynamic system performance evaluations. But this work was 

not in voltage stability point of view, and the dynamic stability criteria didn’t include transient voltage 

behavior. Donde et. al. [61] presented a method to calculate the minimum capacity requirement of an 

SVC to satisfy the post-fault transient voltage recovery (which is a specific case of transient voltage 

dip) requirement. Given the required transient voltage recovery time, the SVC capacity is calculated 

by solving a boundary value problem using numerical shooting methods. The report [23] presented a 

Q-V analysis based procedure for the use by system planners to determine the appropriate mixture of 
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static and dynamic VAR sources at a certain bus. First, the intersection of the required minimum 

voltage and the post-fault Q-V curve considering the short-term exponential load characteristic 

determines the dynamic VAR requirement. Then, the intersection of the required minimum voltage 

and the post-fault Q-V curve with load modeled as constant power less the dynamic VAR requirement 

identified in the previous step is the needed amount of static VAR. An approach was presented in [6], 

[62], and [63] to identify static and dynamic reactive power compensation requirements for an electric 

power transmission system. First, optimal power flow techniques were used to determine the best 

locations for reactive power compensation. Then, Q-V analysis with the constant power load model 

was utilized to find the total amount of reactive compensation at identified locations. Finally, iterative 

time domain simulations were performed to determine a prudent mix of static and dynamic VAR 

sources. Kolluri et. al. presented a similar method in [64] to obtain the right mix of static and dynamic 

VAR sources in a utility company’s load center. All of the coordinated methods mentioned above use 

a sequential procedure to allocate static and dynamic VAR sources. In [28] a systematic approach in 

the determination of a cost-effective FACTS solution against transmission vulnerabilities considering 

transient voltage dip criteria is developed. The analysis in that work presents an example of economic 

assessment of FACTS investment against several possible short term and long term alternatives. The 

result is a priority list of possible solutions for the short-term and long-term along with their respective 

capital cost and/or yearly cost, and a quantification of risk when applicable. The work in [40] 

categorizes the literature relevant to optimal allocation of shunt dynamic Var source SVC and 

STATCOM, based on the voltage stability analysis tools used. Those tools discussed in the paper 

include static voltage stability analysis ones such as P-V and V-Q curve analysis, continuation power 

flow (CPF), optimization methods (OPF), modal analysis, saddle-node bifurcation analysis, and 

dynamic voltage stability analysis ones such as Hopf bifurcation analysis and time-domain simulation. 

A detailed account of various works that has been done for the past 20 years in the dynamic Var 

planning is given.  
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2.7 Summary 

A review of all the related literatures was done in this chapter. The first section had the 

importance of studying this voltage stability/voltage collapse phenomenon, as well its mechanism. 

Then a brief account of some of post-contingency power system criteria was given which will be used 

in the planning procedure suggested in this work. A section was presented discussing about various 

static and dynamic Var devices that exist, and their relative merits/demerits. It was noted that Var 

control planning problem is one of the vital planning problems for modern power system security. 

The various work done towards optimal Var planning to counter voltage stability problems was 

discussed. 

As seen, plenty of publications exist that describe voltage phenomena and discuss planning static 

and dynamic Var resources separately to mitigate voltage stability problem. But a comprehensive 

methodology and satisfactory analysis and design tools that addresses the issue of a coordinated 

static/dynamic VAR source planning is not readily available. So this work is an attempt to develop 

one such tool. The primary idea of this work is based on the work done by Haifeng et. al. in [2], [33], 

[59], [65] which culminated in [38] on planning reactive power control for transmission enhancement. 

A summary of the planning procedure described in [38] and the relevant changes done to it to 

accommodate for this work is presented in the next chapter. 
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CHAPTER 3 REACTIVE POWER PLANNING TOOL 

3.1 Introduction 

The concerns for voltage stability have motivated the development of some study guidelines [23], 

[66] based on which several tools are being developed. These tools help to examine for any serious 

concerns with system voltage stability during planning and operational studies, with the help of some 

security indices and criteria. The methods adopted usually depend largely on the utilities’ experience, 

policies, and regulatory requirements. There are cases where if studies show that voltage instability 

may occur when reactive reserves on specific generators reach certain values, then the utility may use 

such measures as direct indicators of voltage security. The success of any such method depends on the 

understanding of the mechanism of voltage instability for the particular system under a wide variety 

of possible conditions including a variety of contingencies. Moreover, it takes a lot of effort to devise 

planning tools that consider performance criteria that also encompass transient characteristic of 

system voltages, and can also accommodate a large number of contingencies for planning. The work 

described in this thesis, which is based on [38] is an endeavor to develop one such long term reactive 

power planning tool to find optimal allocation of static and dynamic Var sources that considers both 

static as well as dynamic voltage stability performance criteria, there by improving both 

post-contingency steady state as well as short term dynamic characteristics of system voltage.  

We explicitly target the planning of reactive power controls, i.e., reactive power devices intended 

to serve as control response for contingency conditions. Thus the system real power loss or 

production cost is a less important consideration for decision making. A coordinated planning of 

different types of Var resources to achieve potential economic benefit is done in this work. The 

proposed planning algorithm based on [38] has following assumptions: 

• No new transmission equipment (lines and transformers) is installed, and that generation 

expansion occurs only at existing generation facilities. This assumption creates conditions 
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that represent the extreme form of current industry trend of relying heavily on control to 

strengthen and expand transmission capability without building new transmission or 

strategically siting new generation. 

• Existing continuous controllers: The power system has an existing set of continuous 

controllers that are represented in the model, including controls on existing generators. 

• Candidate controllers: Candidate controllers include mechanically switched shunt/series 

capacitors or SVC or coordinated use of any of these in combination. 

The proposed reactive power control planning approach requires few basic steps like establishing 

a voltage stability base case, performing contingency analysis, and planning reactive power control 

satisfying the planning requirements as shown in the Fig. 3.1.  

 

Figure 3.1 Basic steps of the planning process 

1. Establish a Voltage Stability Base Case 

2. Contingency analysis 

3. Obtain all the necessary input 
Information for planning control schemes 

Plan reactive power 
control to restore 
post-contingency 

equilibrium 

Plan reactive power 
control to increase 
post-contingency 
voltage stability 

margin 

Plan reactive power 
control to satisfy the 

requirements of voltage 
stability margin and 
transient voltage dip 
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Figure 3.1 gives a broader idea of the planning tool, while there are many intermediate stages 

involved in performing the planning task such as obtaining sensitivity information, selecting 

candidate locations for planning etc. So the next few sections would give a detailed account of 

successive stages involved in performing a voltage stability assessment and planning against them. 

Section 3.2 contains information about the various system and device models, and their related data is 

used to build a voltage stability base case. Section 3.3 presents the system performance criteria that 

serve as voltage stability indices and section 3.4 gives an account of various tools used to perform the 

various analyses on the test system. Contingency analysis forms the vital component of any long term 

planning tool, which is described in section 3.5. Section 3.6 gives detail of the Var resources used for 

planning and methods to obtain sensitivities of performance measures with respect to these devices. 

Section 3.7 discusses about the selection of initial candidate locations. Final section 3.8 concludes the 

chapter. 

3.2 Establishing a Base Case 

A pre-contingency steady state base case is required for the voltage stability study to be 

performed. Usually, the base case is generated under real-time sequence control (State estimator 

solution), or via an already recorded power flow solution for study purposes by the utility. While 

preparing this base case, there is the vital issue of the extent of system network data representation. 

There are two types of network models that will have to be represented, namely internal and external 

models. The degree of detail for the internal (study area) and external systems representation depends 

upon the type of study being done. Even if ideally the entire interconnected system including both the 

internal and external systems should be represented in as much as detail as possible, in reality some 

form of system reduction may be necessary to keep the size of the system manageable. The onus on 

reduction techniques for voltage stability studies is to retain the same reactive power demand-supply 

characteristics for the original system and the reduced system [11]. It is also essential to properly 
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model all the devices that are important for the system voltage stability. The next section describes the 

modeling requirements of the internal network and the various devices in the power system. 

3.2.1 Modeling Requirements 

The internal model includes representation of lines, generators, transformers, loads, DC 

converters and shunt/series devices etc. The main purpose is to be able to adequately represent the 

switching operations in contingencies and possible remedial action schemes. The related data include 

connectivity/topology information for lines, transformers, shunt/series devices and generating units. 

Additional information like limits on bus voltages for each voltage level for normal and emergency 

operation, zone data etc are very useful for system analysis purposes. 

Power system device modeling requirements depend on the kind of study being done. Usually 

system device representation is done with the static models. In the case of dynamic analyses, dynamic 

models of devices have to be included. Dynamic studies done with static models will give forth to 

dubious results. 

3.2.1.1 Static Device Models 

• Transmission lines represented as pi-sections, possibly with unsymmetrical line charging; 

accompanying data include line pi-section impedances/admittances data; line thermal limit 

both normal and emergency. 

• Transformers represented as pi-sections whereby the various impedance/admittance 

components may be explicit functions of tap settings; three winding transformers must be 

properly modeled  The data needed are transformer pi-section data including tap settings and 

transformer limits under normal/emergency cases 

• Phase-shifting transformers by complex tap ratios, allowing both shift in angle and change in 

voltage magnitude;  

• Generators as real-power source together with a reactive power capability curve as a function 

of terminal voltage; The required generator static data include minimum and maximum 
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ratings, nominal terminal voltage and reactive power capability curve as a function of 

terminal voltage 

• Shunt elements by their impedance/admittance and Static Var compensators by static gain and 

maximum/minimum limits 

• Loads by ZIP model, i.e., as a combination of constant impedance (Z), constant current (I), 

and constant real/reactive injection (P) components; The data necessary are default ZIP load 

partition ratios at nominal voltage, load limits and default power factors 

3.2.1.2 Dynamic Device Models 

• Machine mechanical dynamic equation (swing with damping) and machine electrical 

dynamic equations; machine mechanical parameters such as inertia constant and damping 

co-efficient and machine electrical parameters such as transient/sub-transient reactances and 

time constants etc are required. Saturation model data is also very vital. 

• Excitation systems of various types; the data for each model available in standard power 

system stability analysis programs such as EPRI’s ETMSP, PTI’s PSS/E etc are used in most 

cases. 

• Governor systems of various types; Again the necessary data for each model are usually 

available in standard power system stability analysis programs such as EPRI’s ETMSP etc.  

• Load modeling is very vital for performing a voltage stability study. As mentioned earlier big 

motor loads generally affect the voltage recovery process after voltage sag has been incepted 

due to system faults, and in many occasions due to extended voltage sag secondary effects 

such as stalling of sensitive motors or switching of protective devices etc might happen that 

might lead to massive load disruption. So, it is very vital to represent large, small and trip 

induction motor loads, slow thermostatically driven loads (heating/cooling) etc in various 

combinations. 

Apart from the above, models for selected prime mover, power system stabilizers, and control 
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devices such as SVC etc are required. Apart from the standard device models, user defined models are 

also included while building the dynamic case. In addition to all the system/device data required for the 

models discussed, other system data include convergence parameters such as threshold and maximum 

iteration counts for static power flow studies, and also various other solution parameters used for the 

dynamic time domain simulation.  

Once the voltage stability base case is ready, next system analysis has to be performed to check the 

severity of the contingencies that need planning. So the next vital step in the planning procedure is 

contingency analysis. Voltage stability of the power system should be assessed based on voltage 

security criteria of interest to, and accepted by, the utility. There are many criteria or indices such as 

Mvar reserve in different parts of the system, limits on post-contingency voltage declines, sensitivity 

factors, Eigenvalues, Tangent Vector Index, FSQV (based on summation of diagonal elements of 

power system jacobian) [67], VSMI (based on the relationship between voltage stability and the angle 

difference between sending and receiving end buses) [68] etc. As mentioned in the previous chapter 

the performance criteria used in this work are post-contingency voltage stability margin and transient 

voltage dip magnitude/duration, which are most basic and widely accepted in the industrial 

environment. Usually the prediction/estimation of these performance measures for long term planning 

studies is based on simulation, rather than actual tests. The next section presents the important tools and 

techniques, namely linear sensitivities, used for performing contingency analysis and system control 

planning against steady state as well as dynamic voltage stability related issues in any system. 

3.3 Voltage Stability Analysis Tools and Methods 

There are two general types of tools for voltage stability analysis, namely Static and dynamic [69].  

Static analysis is based on the solution of conventional or modified powerflow equations, while 

dynamic analysis uses time-domain simulations to solve nonlinear system differential algebraic 

equations. While dynamic analysis provides the most accurate replication of the time responses of the 

power system, it is expensive in terms of CPU time and engineering requirements. Moreover, the 
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sensitivities obtained in the case of steady state analysis [54] (modal analysis etc.) provide much more 

information on the relationship between system/control parameters and voltage stability. So many 

analytical methodologies have been proposed and are currently used for the study of voltage stability 

problem using static tools [40]. However, with the advent of trajectory sensitivity techniques 

sensitivity information from the dynamic analysis can be obtained that can be used for the planning 

process concerned with transient voltage dip issues. It is also seen in recent years that new software 

package like DigSILENT employ fast dynamic simulation techniques (Quasi-Dynamic) striking a good 

compromise between speed and accuracy [70]. Such improvement in dynamic analysis has proved to 

be useful for detailed study of specific voltage collapse situations, coordination of protection and time 

dependent action of controls.  

Anyways in our study, time domain simulation together with static voltage stability analysis tools 

such as Continuation Power flow techniques and modal analysis are used to plan optimal mix of static 

and dynamic Var resources against voltage stability issues. There are plenty of references that include 

details about continuation power [71], [72], [73], [74] and time domain simulation and the various 

application of these tools. The next section presents details on how these two tools are used to obtain the 

sensitivity information [13], [75] that will be used for both contingency analysis as well as control 

planning against system steady state (post-contingency stability margin) and dynamic (transient 

voltage dip) voltage stability related issues. 

3.3.1 Steady State Sensitivity Information 

The sensitivity of security margins refers to how much the security margin changes for a small 

change in system parameters such as P and Q bus injections, regulated bus voltages, Bus shunt 

capacitance, Line series capacitance etc. Sensitivity computation is used for two major purposes, 

Contingency Ranking and evaluating Control Action Effectiveness [ 76 ]. The details of how 

contingency ranking and evaluation of the control action’s effectiveness or rather selection of the most 
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effective control action will be given in later sections. This section presents the theory behind 

calculation of margin sensitivities.  

3.3.1.1 Voltage Stability Margin Sensitivity 

Let the steady state of the power system satisfying a set of equations in the vector form be, 

( , , ) 0F x p λ =                                        (3.1) 

where, x is the vector of state variables, p is any parameter in the power system steady state equations 

such as demand and base generation or the susceptance of shunt capacitors or the reactance of series 

capacitors, the state vector, and λ denotes the system load/generation level called the scalar 

bifurcation parameter. The system reaches a state of voltage collapse, when λ hits its maximum value 

(the nose point of the system PV curve), and the value of the bifurcation parameter is equal to λ*. For 

this reason, the system equation at equilibrium state is parameterized by this bifurcation parameter λ 

as shown below.  

0(1 )
li lpi li

P K Pλ= +                                    (3.2) 

0(1 )
li lqi li

Q K Qλ= +                                    (3.3) 

0(1 )gj gj gjP K Pλ= +                                    (3.4) 

where, Pli0 and Qli0 are the initial loading conditions at the base case corresponding to λ=0. Klpi and 

Klqi are factors characterizing the load increase pattern (stress direction). Pgj0 is the real power 

generation at bus j at the base case. Kgj represents the generator load pick-up factor.  

When system parameters are changed, the total transfer capability will probably increase or 

decrease. Reference [13] explains margin sensitivity in the framework of DAE formulation, 

),,( pyxFx =
•

                                      (3.5) 

),,(0 pyxG=                                       (3.6) 

where x are the state variables 
n

Rx∈  ; y are the algebraic variables 
m

Ry ∈ ; p are the independent 

variables or parameters 
l

Rp∈  ; f are the differential equations 
nlmn

RRRRf →**:  ; and g are the 

algebraic equations 
mlmn

RRRRg →**: . 
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where w are the left Eigen vectors of the Jacobian at the nose point.  

Once P∂∂λ  is computed, we will first get the bifurcation parameter estimation as 

P
P
∆

∂
∂

=∆
λ

λ                                        (3.8) 

For a power system model using ordinary algebraic equations, the bifurcation point sensitivity 

with respect to the control variable pi evaluated at the saddle-node bifurcation point is 

* **

* *

ip

i

w F

p w Fλ

λ∂
= −

∂
                                       (3.9) 

where w is the left eigenvector corresponding to the zero Eigen value of the system Jacobian Fx, Fλ is 

the derivative of F with respect to the bifurcation parameter λ and 
ipF  is the derivative of F with 

respect to the control variable parameter pi. 

This margin sensitivity gives the first order partial derivative in the Taylor series expansion of λ  

as a nonlinear function of P, which describes the hypersurface ∑ . The bifurcation parameter 

sensitivity will allow us to know, when some parameters are varied, how the system will move along 

the hypersurface ∑  in the vicinity of the current instability point denoted by *λ . 

The voltage stability margin can be expressed as [38] 

* *

0 0

1 1 1

n n n

li li lpi li

i i i
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= = =

= − =∑ ∑ ∑                        (3.10) 

The sensitivity of the voltage stability margin with respect to the control variable at location i, Si, is                                         

*

0

1

n

i lpi li

ii i

M
S K P

p p

λ

=

∂ ∂
= =
∂ ∂ ∑                              (3.11) 

The discussed concept is depicted in Fig. 3.2 below. 
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Figure 3.2 Transfer margin change with the change of parameter, p [13] 

References [77], [78], [79] first derived these margin sensitivities for different changing 

parameters. Sensitivity formulae with respect to many parameters such as generator exciter gain, 

governor parameter, line susceptance, shunt capacitance etc are given in [13]. 

3.3.2 Transient Voltage Sensitivities  

In the case of coordinated static and dynamic Var planning, sensitivity information about voltage 

dip and duration with respect to reactive compensation parameter is also necessary apart from the 

steady state voltage stability margin sensitivities. As mentioned in previous chapter, SVC is an 

effective means to mitigate transient voltage dip by providing dynamic reactive power support. The 

SVC is modeled as shown in the figure 3.3, with a non-windup limit on the SVC output, constraining 

the SVC susceptance output B [38]. The power system model when the SVC output reaches the limit 

is different from that of when the SVC output is within the limit, as at the limits SVC becomes 

non-controllable and is equivalent to a shunt capacitor. Hence, the ability of an SVC to mitigate 

transient voltage dip depends on the SVC’s capacitive limit (size) Bsvc. Dynamic reactive power 

support increases with Bsvc, but so does the SVC cost.  
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Figure 3.3 Static VAR compensator model [38] 

The response of a power system is hybrid when studying large disturbances. In order to derive the 

sensitivities of the voltage dip time duration and the maximum transient voltage dip to the SVC 

capacitive limit, the hybrid system nature of a power system needs to be considered. The sensitivities 

of the voltage dip time duration and the maximum transient voltage dip to the SVC capacitive limit 

are derived based on the concept of trajectory sensitivities of hybrid systems presented in [38]. The 

trajectory sensitivities provide a way of quantifying the variation of a trajectory resulting from (small) 

changes to parameters and/or initial conditions.  

3.3.2.1 Sensitivity of Voltage Dip Time Duration to SVC Capacitive Limit 

The sensitivity of the voltage dip time duration to the SVC capacitive limit is the change of the 

voltage dip time duration for a given change in the SVC capacitive limit. 

 Let, τ (1) - the time at which the transient voltage dip begins after a fault is cleared, and 

    τ(2) - the time at which the transient voltage dip ends, as shown in Fig. 3.4 below. 
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Figure 3.4 Slow voltage recovery after a fault [38] 

Then the time duration of the transient voltage dip τdip is given by 

                                
)1()2(

dip τττ −=                     (3.12)

  
Thus, the sensitivity of the voltage dip time duration to the capacitive limit of an SVC, Sτ, is 
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where 
)1(

svcBτ  and 
)2(

svcBτ  are calculated based on trajectory sensitivity computations. Numerical details 

are given in [38]. It is noted that the hypersurface s(x,y) of the system state trajectory is defined by 

0.8Vi(0) – Vi(t) when calculating 
)1(

svcBτ , and is defined by Vi(t) – 0.8Vi(0) when calculating 
)2(

svcBτ  

where Vi is the voltage at load bus i (as 20% dip magnitude is the WECC criteria). If the bus voltage 

recovery is too slow after a fault is cleared, then we may consider τ(1) to be equal to the time at which 

the fault is cleared and  therefore, 0)1(

svc
=Bτ  and 

)2(

svcBS ττ = . 

3.3.2.2 Sensitivity of Maximum Transient Voltage Dip to SVC Capacitive Limit 

The maximum transient voltage dip Vdip after the fault is cleared is defined as 

                   %100
0
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dip ×

−
=
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VV
V                     (3.14)  
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where V0 is the pre-fault voltage, and Vmin is the minimum voltage magnitude during the transient 

voltage dip. 

The sensitivity of the maximum transient voltage dip to the SVC capacitive limit, SV, is the 

change of the maximum transient voltage dip for a given change in the SVC capacitive limit 
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−=

∂

∂
≡               (3.15) 

where tmax_dip is the time when the maximum transient voltage dip (minimum voltage magnitude) 

occurs after the fault is cleared, ∂V/∂Bsvc is the voltage trajectory sensitivity to the SVC capacitive 

limit. These trajectory sensitivity calculations are given in [38], which are used in this work.  

3.3.2.3 Numerical Approximation 

It is mentioned in [38] that the trajectory sensitivities and the transient voltage dip sensitivities 

require the computation of integration of a set of high dimension differential algebraic equations 

which is very tedious for a larger power system. The computation burden of obtaining the sensitivities 

is minimal when an implicit numerical integration technique such as trapezoidal integration is used to 

generate the trajectory. An alternative to calculate the sensitivities is using numerical approximation 
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and 
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The above procedure requires repeated runs of simulation of the system model for the SVC 

capacitive limits Bsvc and Bsvc+∆Bsvc. The sensitivities are then given by the change of the voltage dip 

time duration or the maximum transient voltage dip divided by the SVC capacitive limit change ∆Bsvc. 

This procedure is easier to implement for a large power system, even though the computation cost 

may be greater than direct calculation of the sensitivities when large numbers of sensitivities are 

desired.  
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Forthcoming sections will explain how this preliminary analysis on the base case and the obtained 

sensitivity information are used to identify critical contingencies and how reactive power planning is 

done for those critical contingencies that affect the static as well as dynamic voltage stability criteria.  

3.4 Contingency Analysis 

A contingency consists of one or more events occurring simultaneously or at different instants of 

time, with each event resulting in a change of the state of one or more power system elements. A 

contingency may be initiated by a small disturbance, a fault, or a switching action like breaker 

opening/closing, generator tripping, etc. Generally these undesirable events do affect a power 

system’s voltage stability. In the immediate aftermath of a contingency, necessary corrective control 

actions are to be taken to ensure the system does not become voltage unstable, or become vulnerable to 

voltage instability with the minimum criteria being violated. So the task of contingency analysis plays a 

vital role in planning against voltage instability issues in a power system. 

Traditionally, analysis of contingencies is done by simulating each contingency on the base-case 

model of the power system using the tools described in the previous section, i.e., CPF based tool and the 

time domain simulation to assess the voltage stability of a system. Then the calculated 

post-contingency state of the system is checked for performance criteria violations, i.e., 

post-contingency voltage stability margin and transient voltage dip characteristics, and a list of critical 

contingencies is formed that violate the minimum stability criteria.  The planning is done only for 

these selected critical contingencies. In our study, contingency analysis is done for the more probable 

contingencies, i.e., the N-1 and N-G-T. The single contingency test (N-1) covers the loss of any single 

item of generation or transmission equipment at any time. Since it is plausible that at any time, one of 

the generators could be off line, for any number of reasons, an overlapping single contingency (line 

contingency) and generator outage N-G-T is also investigated. Care must be exercised in this case to 

account for the system readjustment after the first outage (G) and before the actual contingency (T), 
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for creating a new base case with one element out-of service.  

Even if the above process of analyzing the critical contingencies seems to be straightforward in 

principle, this task that takes significant time in a voltage stability assessment study. When performed 

for a larger system, it is impractical and unnecessary to analyze in detail the impact of every 

conceivable contingency. Generally, only a limited number of contingencies might impose actual 

threat to voltage stability and these might be quite different from the contingencies critical for 

transient stability, thermal overload, or voltage decline. It is required therefore to select a credible list 

of contingencies that would affect the voltage stability and analyze only those in detail for planning 

purposes. This process of filtering the critical contingencies to be analyzed, so that overall 

computation may be reduced, is known as contingency screening. 

3.4.1 Contingency Screening 

The process of contingency screening is of immense value in forming a list of critical 

contingencies that would have an adverse effect on post contingency voltage stability margin. The 

margin sensitivity described in section 3.3.1.1 can be used for this purpose [78]. The CPF program is 

used to locate the nose point of the base case, and consequently the normalized left eigenvector of the 

nose point Jacobian will provide us the margin sensitivity with respect to bus real and reactive power 

injections, which is in accordance with the linear calculation of margin sensitivity presented in section 

3.3.1.1.  

For transmission line outages, the change in voltage stability margin is estimated as 

QwPwQwPw j
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ii
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L **** +++=∆                (3.18) 

where P and Q are the pre-contingency real and reactive power injections to the outaged line, i and j 

indicate the buses connected by the outaged line, and w
p

i
 represents the scaled left eigenvector 

component corresponding to real power balance at bus I and w
q

i
 corresponds to the reactive power.  

For generator outages, the resulting change in voltage stability margin is estimated as 
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where  Pi∆   and Q
i

∆  are the change of the real and reactive power output of the outaged 

generator respectively. 

Then the contingencies are ranked from most severe to least severe according to the value of the 

estimated change in voltage stability margin. Once the above mentioned contingency screening is 

done and a ranked list of severe contingencies is obtained, the next step is to analyze these selected 

contingencies in detail. So this lessens the burden of performing contingency analysis by giving a 

clear indication of the critical contingencies that need to be assessed in detail. As mentioned earlier 

this screening process is valid to rank the contingencies that have steady state voltage stability issues. 

In the case of transient voltage dip issues, it is necessary to run time domain simulations for every 

conceivable contingency in order to analyze them. But by combining the critical contingency list 

obtained from steady state analysis, some engineering judgment, and some prior knowledge of the 

test system, one can zero in on the critical contingencies that might have severe transient voltage dip 

problems. 

Now the contingencies which cause insufficient voltage stability margin and/or excessive 

transient voltage dip problems are identified using accurate methods. In the case of static analysis, we 

evaluate each contingency from the selected severe contingency list starting from the most severe one 

using the accurate CPF program and stop testing after encountering a certain number of sequential 

contingencies that have the voltage stability margin greater than or equal to the required minimum 

criteria. In order to find the contingencies having excessive transient voltage dip problems, the time 

domain simulation is used. A program has been developed in PSS/E
1
, the software used for dynamic 

study, to automate the time domain simulation for every critical contingency and identify buses that 

violate transient voltage dip criteria under those contingencies. 

                                                        
1 PSS/E is the acronym for Power System Simulator for Engineering tool (PSS™E), which is the standard 

Siemens offering for electrical transmission analysis that has become one of the most comprehensive, 
technically advanced, and widely used commercial programs of its type. 
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Once the critical contingencies are identified, the control planning is performed by formulating a 

mixed integer linear program like the one proposed in [38]. The optimization routine would require 

certain input in order to determine an optimal allocation solution. So the next section summarizes the 

necessary input information required in order to plan control schemes. 

3.5 Inputs for Planning Control Schemes 

Various input required for planning control schemes include: 

• System performance indices for the critical contingencies that need reactive power control planning 

• Sensitivity information 

• Cost information of the control devices 

• Initial candidate location to lessen the computational burden 

3.5.1 System Performance Indices 

After a thorough analysis of the power system using various tools, we identify a set of critical 

contingencies that violate specific pre-determined performance criteria. In our case, the criteria are 

post-contingency steady state voltage stability margin, and transient dip magnitude/duration. The control 

planning algorithm (MIP optimization module) uses these performance indices under every contingency to 

plan reactive support according to the severity of each contingency.  

3.5.2 Sensitivity Information 

As discussed before, the planning algorithm developed in [38] in determining the desired reactive 

power control locations is mainly based on the sensitivity of the performance indices with respect to 

reactive support. The sensitivity information does help the planner to optimally allocate the reactive 

resources which would maximally benefit the system. The sensitivities are obtained as described in 

the section 3.3.1 and section 3.3.2. This work considers MSC and SVC as the two reactive power 

devices to mitigate the static and dynamic voltage stability problems respectively. But, it should be 

understood that the described planning method may be applied to the other types of compensators as 

well such as series compensators, STATCOM etc, as the centre point of the method is to find the 
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sensitivity of the performance indices with respect to these devices. Care should be taken to properly 

model the considered device in the planning procedure. 

3.5.3 Control Device Cost Information  

Cost information is needed to find the total investment cost for system reliability. The objective 

function of the optimization is to minimize this installation cost. So it is vital to properly model this 

information which would consider all the necessary information such as the voltage level, 

geographical location etc. There are not many literatures available that give an exact quantification of 

cost for every device at various voltage levels. But a good idea can be obtained from the literatures 

[20], [28], and [36]. The output of the optimization routine very much depends on this modeling of 

the cost function. It is also to be noted that the optimization is flexible enough to handle any change 

in the objective function formulation with respect to cost modeling.  

The cost in this work is modeled similar to the one in [20]. The total cost of the reactive power 

device has two components as mentioned in section 2.5. Fixed installation cost in $ and the variable 

operating cost in $/Mvar. So the input to the control planning algorithm must include this cost 

information for every candidate location considered for the Var planning. 

3.5.4 Initial Candidate Location 

For reactive power control planning in large scale power systems, the pre-selection of the 

candidate locations for installing new reactive power control devices is important, as it reduces the 

computation burden to solve the MIP/MINLP problem while guaranteeing the existence of feasible 

solutions to the optimization problem. Moreover, if an effective way of choosing the initial candidate 

location is there, then the size of the power system under analysis does not matter, as the optimization 

routine does not involve the full size but only those candidate locations. Usually, candidate control 

locations are chosen only based on the engineering judgment. There is no guarantee that the selected 

candidate control locations are sufficient to provide sufficient reactive power support for all 

pre-defined contingencies. Moreover the practice could result in solutions that are not economically 
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justified.  

The work in [38] develops a backward/forward search algorithm to select candidate locations of 

reactive power controls while satisfying power system performance requirements. But this work does 

not employ this method because very high computational efficiency, available in the CPLEX MIP 

solver renders it unnecessary, even with a large set of candidate control locations of the order of 200. 

Described below is a method that uses sensitivity information and binary search technique to 

pre-select [38] the best candidate locations for the planning process.  

Pre-selection of candidate location: 

Choose an initial set of switch locations using the bisection approach for each identified 

contingency possessing unsatisfactory voltage stability margin and transient voltage dip criteria 

according to the following 3 steps:  

1. Rank the feasible control locations according to the numerical value of margin sensitivities in 

descending order with location 1 having the largest margin sensitivity and location n having 

the smallest margin sensitivity. 

2. Estimate the voltage stability margin with top half of the switches included as 

 
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=

+=
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1

)()()(

max

)(
n

i

kk

i

k

i

k

est MSXM                             (3.20) 

where )(k

estM  is the estimated voltage stability margin and / 2n    is the largest integer less than 

or equal to n/2. If the estimated voltage stability margin is greater than the required value, then 

reduce the number of control locations by one half, otherwise increase the number of control 

locations by adding the remaining one half. Similarly estimate the transient voltage dip duration 

and magnitude using sensitivity information starting from the top half of the switches until 

reaching the exact number of switches required. 

3. Continue in this manner until we identify the set of control locations that satisfies the voltage 

stability margin requirement and transient voltage dip criteria. Do this for every identified 
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critical contingency. 

4. Obtain the final candidate control locations as the union of the results for each identified 

contingencies found in step 3. 

3.6 Control Planning Algorithm 

There are three different control planning algorithms proposed in [38], each addressing different 

planning problems. The first problem formulation deals with planning for cases with voltage instability (a), 

i.e., to take corrective action that brings the voltage stability margin to 0 after a severe disturbance results 

in negative stability margin. The second problem formulation is to increase the post contingency steady 

state voltage stability margin to satisfy the minimum system performance criteria with control planning 

under many contingencies simultaneously (b). Both (a) and (b) can be achieved with static Var devices. 

The third planning problem addressed is a coordinated planning of static and dynamic Var resources 

against problems related to both post contingency steady state voltage stability margin and transient 

voltage dips (c). 

A brief description of each method is given in this section. This section is more or less a summary 

of the planning work done in [38]. The optimization formulation proposed in [38] is the backbone of 

the work in this thesis. A common feature of the planning procedures for all three problems (a), (b) 

and (c) is that they are done in two stages. The first stage involves solving the original MIP problem 

to find the optimal allocation of Var devices. Since the planning procedure uses linear sensitivity 

information, it is very likely that there are some contingencies that might require additional iterations 

when the obtained control solution from original MIP is updated in the system and validated. So the 

second stage involves solving an updated MIP problem to refine the control amount in case some 

contingencies violate the minimum system performance criteria even after the system up-grade with 

additional control resources. Figure 3.5 shows the general flow of planning procedure for every 

planning problem with successive MIP to refine the control amount. 
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Figure 3.5 Flowchart of planning procedure with successive MIP 

The result of the implementation of this planning method on New England 39 bus system was 

presented in [38]. The work in this thesis is the application of this planning algorithm to a large scale 

power system. Detail of the entire work done to develop a comprehensive voltage stability assessment 

tool is given in the next chapter with the application on a larger system of more than 16,000 buses. 

Necessary changes to the planning procedure described in [38] have been made according to the 

application requirements of a larger system and assumptions considered in this work.  

3.6.1 Planning Problem (a): Corrective Planning against Voltage Instability 

Voltage instability is one of the major threats to power system operation. Severe contingencies 

such as tripping of heavily loaded transmission lines or outage of large generating units can cause 
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voltage instability when no new equilibrium of the power system exists (negative voltage stability 

margin) after contingencies. There are very many options to restore equilibrium such as redispatch of 

generation, blocking tap-changing transformers, load shedding etc [11]. In the face of loss of 

equilibrium, switched shunt and series capacitors are generally effective control [38].  

In this work, an approach similar to [38] for planning minimum amount of switched shunt 

capacitors to restore the voltage stability under severe contingencies is implemented. Through 

parameterization of severe contingencies, the continuation method is applied to find the critical point. 

Then, with a set of initial candidate locations for switched shunt capacitors, a mixed integer 

programming formulation has been proposed for estimating locations and amounts of switched shunt 

capacitors to withstand a planned set of contingencies. A sequence of MIP with updated information 

is utilized to further refine the control locations and amounts. Because the problem formulation is 

linear, it is scalable and at the same time provides good solutions. 

3.6.1.1 Contingency Analysis via Parameterization and Continuation 

This section discusses a technique used in [38] to plan for certain severe contingency cases when 

a power system may lose equilibrium, and corrective control planning has to be done. For such a case, 

the techniques of contingency parameterization and continuation can be used for planning corrective 

reactive power controls to restore equilibrium. There are basically two common types of 

contingencies that cause voltage instability. One is branch type of contingency such as the outage of 

transformers or transmission lines. The other is node type of contingency such as the outage of 

generators or shunt reactive power compensation devices. The contingency parameterization for both 

types of contingencies is as follows. 

Parameterization of Branch Outage 

The set of parameterized power flow equations at bus i for the outage of branch br connecting bus 

i to bus m is as follows 
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where { }ijYjiL ij ≠≠= ,0:)(  is the set of buses that are directly connected to bus i through 

transmission lines, Gij+jBij is the (i, j) element of the bus admittance matrix, Gii+jBii is the ith 

diagonal element of the bus admittance matrix, θij is the voltage angle difference between bus i and 

bus j, Vi and Vj are voltage magnitude of bus i and bus j respectively, new

ii

new

ii jBG +  is the new kth 

diagonal element of the bus admittance matrix and new

im

new

im jBG +  is the new (i, m) element of the bus 

admittance matrix after branch br has been removed from the system, inj

iP and inj

iQ are real power 

and reactive power injections at bus i. Pim(Vi, Vm, λ) and Qim(Vi, Vm, λ) are defined as follows: 
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The case of λ=0 represents the original set of power flow equations before the contingency. The case 

of λ=1 represents the new set of power flow equations with branch br removed.  

Parameterization of Generator Outage 

The parameterized power flow equation at bus i for the outage of the generator at that bus is as 

follows: 









=+−−−−

=−+−−−

∑

∑

∈

∈

0)cossin()1(

0)sincos()1(

2

)(

2

)(

iii

iLj

ijijijijjidigi

iii

iLj

ijijijijjidigi

BVBGVVQQ

GVBGVVPP

θθλ

θθλ
           (3.24)    

where Pgi and Pdi are generator real power output and load real power respectively, and Qgi and Qdi 

are generator reactive power output and load reactive power respectively. For a generator of PV type, 
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Qgi is the reactive power output under the normal operating condition.  

The real power generation loss Pgi due to generator outage can be reallocated among the available 

generators. Let ∆Pgz be the specified real power increase of available generator z after the faulted 

generator i is removed from the system.  

The parameterized power flow equation at generator bus z for the outage of the generator at bus i 

is as follows: 

0)sincos( 2

)(

=−+−−∆+ ∑
∈

zzz

iLj

zjzjzjzjjzdzgzgz GVBGVVPPP θθλ          (3.25)     

The case λ=0 represents the power flow equations before contingency. The case of λ=1, represents the 

power flow equations after the generator at bus i is shut down. 

Continuation Method 

The parameterized set of equations representing steady state operation of a power system under 

N-k contingency (where k>2) can be represented as in equation 3.1. In this case λ is the scalar 

uncontrollable bifurcation parameter that parameterizes the simultaneous outage of k components. 

Specifically, when λ=0, the set of parameterized steady state equations represents the one before 

contingency. On the other hand, when λ=1, the set of parameterized steady state equations is the one 

after all faulted k components are removed from the system. 

The continuation method can be used to find the critical point associated with a contingency 

precisely and reliably. In addition, the sensitivity information obtained as a by-product of the 

continuation method is useful for reactive power control planning. During the continuation process, λ 

is increased from 0 to 1 as shown in Figure 3.6 below. If there is a stable operating point after a 

contingency, the continuation method can find this point with λ* = 1. If there is no power flow 

solution following a contingency, the continuation method will obtain a critical point with λ* < 1.  
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Figure 3.6 Bifurcation curve obtained by the continuation method 

Mathematically, the continuation method finds the critical point if the following conditions are 

satisfied: 

0),,( *** =λpxF                                 (3.26) 

0,0 *** ≠= wFw x
                                (3.27)  

where w* is the left eigenvector corresponding to the zero Eigen value of the singular Jacobian Fx
*, 

(x*, p*, λ*) is the critical point.  

Once the critical point is found by the continuation method, the sensitivity of the bifurcation 

parameter with respect to the control variable p evaluated at the critical point is 

**

***

λ

λ
Fw

Fw

p

p−=
∂
∂

                                   (3.28) 

where Fλ
* is the derivative of F with respect to the bifurcation parameter λ evaluated at the critical 

point and Fp
* is the derivative of F with respect to the control variable p evaluated at the critical point. 

The bifurcation parameter sensitivity is used to plan cost-effective reactive power controls against 

voltage collapse. 
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3.6.1.2 Formulation for Corrective Control Planning 

 After the initial set of candidate locations for switched shunt capacitors are found using a 

method such as bisection method described in section 3.5, they used in the planning algorithm as the 

decision variables. A mixed integer programming (MIP) to estimate control locations and amounts is 

formulated. The MIP minimizes control installation cost while restoring equilibrium (i.e. the 

bifurcation parameter at the critical point λ* is greater than or equal to one): 
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min maxi i i i iB q B B q≤ ≤                              (3.32) 

1,0=iq                                        (3.33) 

The decision variables are Bi
(k), Bi, and qi. 

Here,  

• Cf is fixed installation cost and Cv is variable cost of switched shunt or series capacitors, 

• Bi is the size (susceptance) of the switched shunt capacitor at location i, 

• qi=1 if location i is selected for reactive power control expansion, otherwise, qi=0,  

• the superscript k represents the contingency under which there is no equilibrium, 

• Ω1 is the set of candidate locations to install switched shunt capacitors, 

• Bi
(k) is the size of the shunt capacitor to be switched on at location i under contingency k,  

• Si
(k) is the sensitivity of the bifurcation parameter with respect to the susceptance of the shunt 

capacitor at location i under contingency k,  

• λ
*(k) is the bifurcation parameter evaluated at the critical point under contingency k and 
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without controls, 

• Bimin is the minimum size of the switched shunt capacitor at location i, 

• Bimax is the maximum size of the switched shunt capacitor at location i. 

The output of the MIP is the control locations and amounts for all k contingencies and the control 

location and amount. For each concerned contingency, the identified controls are switched in, and λ* 

is recalculated to check if an equilibrium is restored. However, because we use the linear sensitivity 

to estimate the effect of the variations of control variables on the value of the bifurcation parameter at 

the critical point, there may be contingencies that have λ* less than one after the network 

configuration is updated according to the results of the MIP. The control locations and/or amounts 

can be further refined by solving a second-stage mixed integer programming with updated 

information. In the successive MIP, we use updated sensitivity at each iteration. 

3.6.1.3 Formulation of MIP with Updated Information 

The successive MIP is formulated to minimize the total control installation cost subject to the 

constraint of equilibrium restoration, as follows: 
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The decision variables are 
)(k

iB , iB , and 
i

q . 

Here,  

• iB  is the new size of the switched shunt capacitor at location i,  
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• 
i

q ’s are new binary control location variables, 

• 
( )k

iS  is the updated sensitivity of the bifurcation parameter with respect to the susceptance of 

the switched shunt capacitor at location i under contingency k,  

• 
)(k

iB is the new size of the switched shunt capacitor at location i under contingency k ,  

• 
)*(k

λ is the updated bifurcation parameter evaluated at the critical point under contingency k . 

The above successive MIP will end until all concerned contingencies have satisfactory voltage 

stability margin and there is no significant movement of the decision variables from the previous MIP 

solution. The effectiveness of the method is illustrated by applying it to a large-scale system.  

3.6.2 Planning Problem (b): Preventive Control planning against voltage instability 

The previous section presented an optimization-based method of planning reactive power control 

in electric power transmission systems to restore equilibrium under severe contingencies. In this 

section, planning problem to increase voltage stability margin under certain contingencies that is 

prone to voltage instability is addressed. The voltage stability margin of the system under these 

contingencies is increased to meet certain the prescribed minimum criteria in order to keep the system 

secure. An optimization formulation similar to the previous section is used here. Instead of 

considering only the most severe contingency or considering several contingencies sequentially the 

proposed planning method considers multiple contingencies simultaneously. 

3.6.2.1 Formulation of Original Mixed Integer Programming 

Again the solution has two stages, first to solve original MIP, and then to update if criteria are not met. 

The MIP minimizes the total control installation cost while increasing the voltage stability margin to a 

required percentage x for each concerned contingency. 
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The decision variables are Bi
(k), Bi, and qi. All the variables are the same as defined in the previous 

section 3.6.1.2, except for some new variables. 

• x is an arbitrarily specified voltage stability margin in percentage 

• Pl0 is the forecasted system load 

• M
(k) is the voltage stability margin under contingency k and without controls 

Here, we may increase the voltage stability margin for those contingencies that resulted in voltage 

instability (which are now compensated) to the required value along with other contingencies having 

insufficient voltage stability margin to meet the minimum criteria. In order to minimize the total 

installation cost of switched shunt capacitors, the previously identified switched shunt capacitors can 

be utilized to increase the voltage stability margin for other contingencies.  

The output of the mixed integer-programming problem is the control locations and amounts for all 

k contingencies and the combined control location and amount. Then the network configuration is 

updated by switching in the controls under each contingency. After that, the voltage stability margin 

is recalculated using CPF to check if sufficient margin is achieved for each concerned contingency. In 

this case of the criteria being not satisfied due to usage of  linear sensitivity information, the control 

locations and/or amounts are further refined by re-computing margin sensitivities (with updated 

network configuration) under each concerned contingency, and solving a second-stage successive 

MIP with updated information, as described in the next subsection. 

3.6.2.2 Formulation of MIP with Updated Information 

The successive MIP is formulated to minimize the total control installation cost subject to the 
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constraint of the voltage stability margin requirement, as follows: 
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The decision variables are 
)(k

iB , iB , and 
i

q . 

Here, all the variables are the same as defined in the previous section 3.6.1.3, except for some 

new variables. 

• 
( )k

M  is the updated voltage stability margin under contingency k. 

The above successive MIP will end until all concerned contingencies have satisfactory voltage 

stability margin and there is no significant movement of the decision variables from the previous MIP 

solution. The effectiveness of the method will be illustrated by applying it to a large-scale system in 

next chapter. 

3.6.3 Planning Problem (c): Coordinated Control Planning 

The previous section presented an optimization-based method for planning reactive power 

controls in electric power transmission systems to satisfy the voltage stability margin requirement 

under a set of contingencies. This section uses a similar optimization formulation that uses sensitivity 

information to solve the problem of coordinated allocation of static and dynamic Var resources. The 

last two sections had sensitivity of loading margin with respect to static shunt reactive sources 

(MSCs). This section includes the usage of sensitivity information of transient voltage dip magnitude 

and duration with respect to dynamic Var source like SVC. While many existing methodologies 
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determine static and dynamic Var support sequentially, this method simultaneously determines the 

optimal allocation of static and dynamic VAR sources to satisfy the requirements of long-term voltage 

stability margin and transient voltage dip [38].  

3.6.3.1 Formulation of Original Mixed Integer Programming 

After finding the candidate locations for mechanically switched shunt capacitors and SVCs, a 

mixed integer program (MIP) is used that minimizes the total installation cost of mechanically 

switched shunt capacitors and SVCs while satisfying the requirements of voltage stability margin and 

transient voltage dip. 
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The decision variables are
(k)

shunt_iB , Bi_shunt, qi_shunt, 
(k)

svc_iB , Bi_svc, and qi_svc.  

Variable definition follows:  

• Cf_shunt is fixed installation cost and Cv_shunt is variable cost of shunt capacitors, 

• Cf_svc is fixed installation cost and Cv_svc is variable cost of SVCs, 
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• Bi_shunt: size of the shunt capacitor at location i,  

• Bi_svc: size of the SVC at location i, 

• qi_shunt=1 if the location i is selected for installing shunt capacitors, otherwise, qi_shunt=0, 

• qi_svc=1 if the location i is selected for installing SVCs, otherwise, qi_svc=0, 

• the superscript k represents the contingency causing insufficient voltage stability margin 

and/or excessive transient voltage dip problems, 

• Ωshunt: set of candidate locations to install shunt capacitors, 

• Ωsvc: set of candidate locations to install SVCs, 

• Ω: union of Ωshunt and Ωsvc, 

• )(

shunt_

k

iB : size of the shunt capacitor to be switched in at location i under contingency k,  

• )(

svc_

k

iB : size of the SVC at location i under contingency k, 

• )(

,

k

iMS : sensitivity of the voltage stability margin with respect to the shunt susceptance at 

location i under contingency k,  

• )(
,,

k

inSτ : sensitivity of the voltage dip time duration at bus n with respect to the size of the SVC 

at location i under contingency k, 

• )(
,,

k

inVS : sensitivity of the maximum transient voltage dip at bus n with respect to the size of 

the SVC at location i under contingency k, 

• M
(k): voltage stability margin under contingency k and without controls, 

• Mr: required voltage stability margin, 

• τdip,n
(k): time duration of voltage dip at bus n under contingency k and without controls, 

• τdip,n,r: maximum allowable time duration of voltage dip at bus n, 

• Vdip,n
(k): maximum transient voltage dip at bus n under contingency k and without controls, 

• Vdip,n,r: maximum allowable transient voltage dip at bus n, 

• Bimin_shunt: minimum size of the shunt capacitor at location i, 
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• Bimax_shunt: maximum size of the shunt capacitor at location i, 

• Bimin_svc: minimum size of the SVC at location i, and 

• Bimax_svc: maximum size of the SVC at location i. 

Note that SVCs can also be used to increase the voltage stability margin. The output of the mixed 

integer-programming problem is the reactive compensation locations and amounts for all concerned 

contingencies and the combined reactive compensation location and amount. Then the network 

configuration is updated by including the identified reactive power support under each contingency. 

After that, the voltage stability margin is recalculated using CPF to check if sufficient margin is 

achieved for each concerned contingency. Also, time domain simulations are carried out to check 

whether the requirement of the transient voltage dip performance is met. This step is necessary 

because the power system model is inherently nonlinear, and the mixed integer programming 

algorithm uses linear sensitivities to estimate the effect of variations of reactive support levels on the 

voltage stability margin and transient voltage dip. So if need be, the reactive compensation locations 

and/or amounts can be further refined by re-computing sensitivities (with updated network 

configuration) under each concerned contingency, and solving a second-stage mixed integer 

programming problem, as described in the next subsection. 

3.6.3.2 Formulation of MIP with Updated Information 

The successive MIP problem is formulated to minimize the total installation cost of mechanically 

switched shunt capacitors and SVCs subject to the constraints of the requirements of voltage stability 

margin and transient voltage dip, as follows: 

Minimize   ∑
Ω∈
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i
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shunt_shuntmax_shunt_shunt_shuntmin_ iiiii qBBqB ≤≤                         (3.63) 

 svc_svcmax_svc_svc_svcmin_ iiiii qBBqB ≤≤                               (3.64) 

1,0, svc_shunt_ =
ii

qq                                                (3.65) 

The decision variables are 
)(

shunt_

k

iB , shunt_iB , shunt_iq , 
)(

svc_

k

iB , svc_iB  and svc_iq . 

Variable definition follows:  

• shunt_iB : new size of the shunt capacitor at location i,  

• svc_iB : new size of the SVC at location i, 

• shunt_iq  and svc_iq are new binary location variables for shunt capacitors and SVCs, 

• )(

,

k

iMS : updated sensitivity of the voltage stability margin with respect to the shunt susceptance 

at location i under contingency k,  

• )(

,,

k

inSτ : updated sensitivity of the voltage dip time duration at bus n with respect to the size of 

the SVC at location i under contingency k, 

• 
)(

,,

k

inVS : updated sensitivity of the maximum transient voltage dip at bus n with respect to the 

size of the SVC at location i under contingency k, 

• 
)(

shunt_

k

iB : new size of the shunt capacitor at location i under contingency k,  

• 
)(

svc_

k

iB : new size of the SVC at location i under contingency k,  

• ( )k

M : updated voltage stability margin under contingency k, 
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• 
)(

dip,

k

nτ : updated time duration of voltage dip at bus n under contingency k, and 

• 
)(

dip,

k

nV : updated maximum transient voltage dip at bus n under contingency k. 

The above successive MIP will end until all concerned contingencies have satisfactory voltage 

stability margin and transient voltage response and there is no significant movement of the decision 

variables from the previous MIP solution. The effectiveness of the method will be illustrated in a 

large-scale system in next chapter. 

3.6.4 Common Features of Planning Problems (a), (b) and (c) 

• The optimization formulation is to minimize the total installation cost including fixed cost 

and variable cost of new controls while satisfying the voltage stability margin requirement 

under contingencies. 

• The voltage stability margin and the transient voltage dip magnitude/duration sensitivities 

with respect to control variables are used in the optimization problem formulation according 

to what the problem address. 

• The above developed optimization formulation does not directly involve complex steady state 

and dynamic power system models. Instead, it uses the corresponding sensitivity information. 

• The branch-and-bound and primal-dual interior-point methods are used to solve the 

optimization problem. 

• Because the optimization formulation is linear, it is fast, yet it provides good solutions for 

large-scale power systems compared with nonlinear optimization formulations. 

• For k contingencies that need planning and n pre-selected candidate control locations, there 

are n (k+2) decision variables and k+3n+2kn constraints. Since the number of candidate 

control locations can be limited to a relative small number even for problems of the size 

associated with practical power systems by pre-selecting the initial set of locations, the 

computational burden for solving the above MIP is not excessive. 
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3.7 Summary 

The chapter gives detail of the various stages involved in the making of a coordinated 

control-planning tool against voltage stability problems. The tools and methods described in this 

chapter gives us the list of critical contingencies that affect post contingency steady state voltage 

stability margin and transient voltage profile, and calculate the performance indices under those 

contingencies. An initial set of candidate control locations are selected using the calculated margin 

sensitivities and transient voltage dip duration/magnitude sensitivities. These inputs are fed to the 

control-planning module, which is essentially a MIP program, to optimally plan the reactive resource 

allocation. The proposed mixed integer programming based algorithm addresses the following three 

different planning problems: 

1. To calculate reactive control locations and amounts to restore equilibrium under a set of 

severe contingencies;  

2. To increase post contingency voltage stability margin under a set of contingencies; and  

3. To coordinate planning of static and dynamic Var resources while satisfying the performance 

requirements of voltage stability margin and transient voltage dip.  

The planned reactive power controls are capable to serve as control response for contingencies. 

The optimal solution obtained from first stage planning is validated for every contingency with their 

respective control strategy, and if the problems are unresolved a successive planning problem is 

solved until the performance indices do not violate. The following chapter includes the results of the 

entire planning process implemented on the Eastern interconnection system with more than 16000 

buses. 
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CHAPTER 4 APPLICATION TO LARGE SCALE SYSTEM 

4.1 Introduction 

 

This chapter illustrates the results of the reactive power planning method described in previous 

chapter using a large-scale model.  The result of the method is a cost effective solution to plan 

optimal mix of static and dynamic reactive power sources.  

All the required data for the study, i.e., power flow base case data, and the dynamic files 

including the models for generator and load systems, and the various parameter settings for the 

dynamic simulation, were obtained from a utility. This study targeted a subsystem of the utility’s 

control area, henceforth referred to as the “study area.”  

The contingencies considered for the study are the more probable ones, i.e., N-1 and N-G-T. The 

objective is to identify a minimum cost mix of static and dynamic Var resources that results in 

satisfactory voltage stability and transient voltage dip performance for all considered contingencies. 

The voltage stability criteria used was that steady state voltage stability margin must be no less than 

5% of total load, and transient voltage dip must not exceed 20% of the initial voltage for more than 20 

cycles. 

CPF based PV analysis and time domain simulation are the tools used to study the steady state 

and dynamic system performances respectively. The sensitivity information of the system 

performance with respect to the reactive control device is important in order to optimally allocate the 

reactive resources. Matlab programming and PTI PSS/E power flow and dynamics packages are the 

software tools used for this work. The steady state analysis is done in Matlab, while the dynamic 

voltage stability analysis is done using PTI PSS/E. The coordinated planning algorithm is done in 

Matlab which input like control device cost information, static and dynamic sensitivity information etc 

from earlier analysis. The analysis and planning program is done in Matlab exploiting its capability to 

perform vectorized computations and sparse matrix functions in order to optimize performances in an 
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endeavor to develop this research grade planning tool. Although we choose to use Matlab and PSS/E, it 

should be pointed out that the general procedure presented here is equally applicable using other static 

and dynamic analysis packages and programming tools, provided they incorporate appropriate 

modeling and solution methods. 

It is important to note here that a data conversion module was built that converted the system raw 

data (the base case as given by the utility) that is in PTI format to a format that was understandable by 

Matlab. This data format conversion module is a vital component of this work, as the entire system 

analysis and planning has been done using program modules developed in Matlab. The conversion 

module includes tasks such as careful modeling of 3-winding transformer data, switched shunt data 

etc., checking system topology, checking for any islanding etc, so that the utility’s base case is 

transported without any errors into Matlab environment from PSS/E for further system analysis. This 

data format conversion module, which is a by product in the overall endeavor to develop a long term 

reactive power planning tool against voltage stability issues, is one of the very important 

contributions of this work, as this kind of conversion modules are very useful in any work where a 

research grade tool is being developed or any sophisticated analysis are done as part of any research 

effort where Matlab is the very commonly used programming tool. With minimal modifications to the 

conversion module, it can be made to convert any data format such as IEEE common data format, 

WECC format etc into a format readable by Matlab. 

This chapter is organized as follows. Section 4.2 summarizes the basecase power flow model and 

the particular stress direction used in the illustration. Section 4.3 reports the results of a contingency 

selection process used in the study. Sections 4.4 and 4.5 illustrate the planning procedure 

implemented assuming that only voltage stability is of concern. Section 4.6 extends these results for 

the case when both voltage stability and transient voltage dip are of concern.  

4.2 Basecase and Stress Direction 

A summary of the base case used for the study is provided in Table 4.1. Information specific to 
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the study area is provided in a separate column. It was assumed that this basecase represented the 

topology and loading conditions for which a reactive power plan is desired.  

Table 4.1 Summary of the basecase  
 

      # Total  Study Area 

External to 

Study Area 

Buses 16173 2069 14104 

Generators 2711 239 2472 

Transformers 7261 463 6798 

Pgen (MW) 603798.9 37946.7 565852.2 

P (load) (MW) 

[Const. P,   591927.2 30065.2 561862 

 Const. I, 100.3 0 100.3 

 Const. Z] 116.4 0 116.4 

Q (load) (MVar) 

[Const. Q,   208138.8 9067.6 199071.2 

 Const. I,  26.4 0 26.4 

 Const. Z] 125 0 125 

 

As described in Chapters 3, continuation power flow (CPF) is used to analyze the steady state 

performance characteristics of the system. CPF requires an assumption of a stress direction depicting 

a future power loading or transfer pattern in the system. To this end, the area of interest is divided into 

88 different zones, which are grouped into 6 Market zones (MZ) as shown in the Table 4.2 below. 

Table 4.2 Market Zones within the Study Area 

Market Zones Zones 
MZ1 100 - 104; 200 – 204; 501 - 504; 600 - 603; 701    

MZ2 105 - 109; 111-112; 205 - 209; 211 - 212; 306; 312; 505 - 508; 511 - 512;   

MZ3 
110 ; 140 - 152; 161; 210; 240 - 252; 310; 410; 451; 510; 540 - 552; 561; 
 650 - 651; 750; 850; 938    

MZ4 120 - 122; 220 – 222; 322; 422; 521; 720 - 721; 820 - 821    

MZ5 123 - 130; 223 – 230 

MZ6 160; 162 - 163; 261 - 262; 462; 560; 562 - 563; 939 

 
These 6 market zones represent 6 different stress directions typically studied by planning 

engineers, with the stress direction Sink characterized by the set of loads inside the zones, and the 
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stress direction Source characterized by generators outside of these zones, but within the study area. 

The CPF scales the Sink loads upwards with corresponding increase to the Source generators to find 

the collapse point (nose of the PV curve). Increased load is allocated to the source generators in 

proportion to each generator’s rating while enforcing generator reactive power limits. 

Voltage instability analysis using CPF-based contingency screening was performed on the 

basecase and for all credible contingencies under these six different stress directions. The list of 

credible contingencies included all possible N-1 and N-G-T contingencies in the study area. The 

number of such contingencies was 2268 N-1 contingencies (2100 branch contingencies and 168 

generator contingencies) and all possible combinations (2100*168=352,800) for N-G-T 

contingencies. 

Results indicated only the stress direction corresponding to the MZ1 region was found to have 

post contingency steady state voltage stability related problems. As a result, we studied only MZ1 to 

determine reactive resources and the corresponding static vs. dynamic mix, so as to limit the work 

while appropriately illustrating the approach. Table 4.3 below provides the voltage instability 

performance measure for the basecase conditions. 

Table 4.3 Performance measure for basecase conditions 

Base case load in the MZ1 
sink (MW) 

Critical point 
 (MW) 

Stability margin 
(%) 

2073 2393 15.43657 

 

4.3 Contingency Analysis for Market Zone 1  

As stated in Section 4.2, contingency screening indicated voltage instability problems occur only 

in MZ1. This section describes the contingency screening performed in order to identify those 

contingencies that drive the need for additional reactive resources in MZ1.  

The 5% voltage stability margin requirement described in Section 4.1 means for MZ1 (with 2073 

MW load) that 103 MW should be the minimum load margin, for both N-1 and N-G-T contingencies. 
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Contingencies that violate this criterion are used in the ensuing reactive power planning analysis. 

Modeling of N-1 generator contingencies and N-G-T contingencies requires special 

considerations, as follows: 

• N-1 Generator contingencies: Remaining generators within the study area pick up the loss of 

generation in proportion to their MVA rating. The system slack bus compensates only for 

losses. 

• N-G-T contingencies: The generator outage is simulated first consistent with the comment 

made in the previous bullet. Then, based on the assumption that the interevent time is long 

enough (e.g., at least 15 minutes), system adjustments (switched shunts, taps, and area 

interchange) are made, and the second contingency is then simulated. 

The result from contingency screening process shows a total of 82 contingencies that either 

violated voltage instability margin criteria or led to voltage instability (negative stability margin). The 

82 contingencies included 2 N-1 contingencies corresponding to the two critical generator outages at 

buses 97451 (G1LEWIS) and 97452 (G2LEWIS). The remaining 80 contingencies were N-G-T 

contingencies, with a set of 40 line contingencies repeating themselves under the two critical 

generators being outaged separately. 

Full CPF analysis was performed on the 82 contingencies identified in the screening process, 

using both our Matlab code, with results verified using PSS/E. This resulted in elimination of 26 of 

the contingencies due to the fact that CPF indicated post-disturbance performance for these 26 

satisfied all criteria. The remaining 56 contingencies therefore comprised the set that would drive 

subsequent reactive power planning. These 56 contingencies are summarized in Table 4.4. 

All of the selected 56 contingencies were N-G-T (none of the N-1 contingencies had any 

post-contingency margin violation problem). These 56 N-G-T contingencies either resulted in voltage 

instability (rows 1-7), or they violated loading margin criteria (rows 8-28), as indicated in the 

right-hand columns of Table 4.4. 
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Table 4.4 Critical Contingencies 

 

4.4 Reactive Resources to Restore Equilibrium 

 

The first step in the planning process is to identify reactive resources necessary to ensure all 

contingencies result in equilibrium, i.e., have positive loading margin. The approach taken in this step 

is consistent with that described in Chapter 3. It is possible to find operational solutions for restoring 

post-contingency equilibrium, e.g., using load shedding. Our planning approach restores equilibrium 

by identifying an amount and location of reactive resources just sufficient to restore equilibrium. 

Since these contingencies are N-G-T, a base case with a generator removed is solved; the branch 

to be outaged is then parameterized as described in Section 3.6.1.1 of chapter 3. The parameterized 
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system equations are then used to simulate the branch contingency and identify the necessary reactive 

resources for that contingency. This process can require several iterations, as the use of linear 

sensitivities at the bifurcation point does not guarantee an optimal solution on the first attempt. The 

parameterization is done for every branch contingency under the N-G base case, and the bifurcation 

parameter and its sensitivities are obtained for each case. 

The mixed integer programming (MIP) optimization problem used to identify the investment 

solution to the equilibrium restoration problem requires candidate locations, margin sensitivity 

information at those locations, reactive resource cost information for each voltage level, and amount 

of additional margin for each contingency. We describe procedures for obtaining the candidate 

locations (in Subsection 4.4.1), the cost information (in Subsection 4.4.2), and the required margin (in 

Subsection 4.4.3). 

4.4.1 Candidate Location Selection 

The obtained bifurcation parameter sensitivities with respect to shunt capacitance (dλ/dB) under 

each contingency are used to select the candidate location set for planning reactive control. In this 

work, the bifurcation parameter sensitivity is converted into loading margin sensitivity; i.e., dM/dB, 

where M is the loading margin. The candidate locations under each contingency are obtained by 

ranking all the study area buses in descending order of the dM/dB under each contingency.  

Table 4.5 below indicates the top 20 candidate locations in descending order of dM/dB for the top 

seven most severe contingencies that resulted in voltage instability (and therefore require equilibrium 

restoration), when generator at 97451 is outaged. Bus numbers that are in bold font are 138 KV buses. 

The bus numbers in regular fonts are 69 KV buses. 

Table 4.6 below shows the top 20 candidate locations in descending order of dM/dB for the top 

seven most severe contingencies (as listed in Table 4.4) that resulted in voltage instability (and 

therefore require equilibrium restoration), when generator at 97452 is outaged. Bus numbers that are 

in bold font are 138 KV buses. The bus numbers in regular fonts are 69 KV buses. 
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Table 4.5 Candidate location set for N-G-T, where Gen at 97451 is outaged 

 Contingency Number 

Rank # 1 # 2 # 3 # 4 # 5 # 6 # 7 

1 97463 97511 97504 97504 97511 97511 97516 

2 97457 97504 97511 97511 97525 97504 97517 

3 97455 97525 97523 97503 97516 97501 97523 

4 97468 97523 97525 97500 97502 97500 97511 

5 97544 97516 97517 97524 97517 97503 97525 

6 97504 97517 97516 97523 97523 97524 97457 

7 97511 97502 97524 97525 97504 97523 97455 

8 97500 97524 97500 97517 97524 97525 97503 

9 97501 97500 97503 97516 97527 97517 97504 

10 97524 97501 97502 97505 97500 97516 97500 

11 97523 97503 97501 97502 97506 97502 97464 

12 97502 97505 97505 97506 97501 97505 97524 

13 97525 97527 97506 97501 97505 97506 97501 

14 97517 97506 97527 97527 97503 97527 97505 

15 97516 97507 97507 97507 97515 97507 97527 

16 97505 97515 97455 97455 97507 97457 97502 

17 97506 97457 97463 97468 97457 97452 97506 

18 97527 97455 97468 97463 97455 97464 97507 

19 97507 97508 97562 97457 97522 97455 97515 

20 97464 97457 97457 97569 97509 97468 97514 

         

Table 4.6 Candidate location set for N-G-T, where Gen at 97452 is outaged 

 Contingency Number 

Rank # 1 # 2 # 3 # 4 # 5 # 6 # 7 

1 97463 97511 97504 97504 97511 97511 97511 

2 97457 97525 97511 97511 97525 97525 97516 

3 97455 97516 97500 97503 97516 97504 97517 

4 97468 97517 97524 97500 97504 97516 97523 

5 97504 97523 97503 97524 97517 97517 97525 

6 97544 97504 97523 97523 97523 97523 97457 

7 97511 97501 97525 97525 97524 97502 97455 

8 97501 97502 97517 97517 97502 97524 97504 

9 97525 97524 97516 97516 97500 97506 97503 

10 97523 97500 97502 97505 97503 97527 97500 

11 97516 97503 97505 97502 97505 97500 97524 

12 97517 97527 97506 97506 97527 97501 97505 

13 97502 97505 97463 97527 97506 97505 97501 

14 97524 97506 97501 97501 97501 97503 97464 

15 97500 97515 97455 97507 97515 97507 97506 

16 97503 97507 97527 97455 97507 97515 97527 

17 97505 97509 97468 97468 97457 97457 97502 

18 97506 97455 97457 97463 97455 97522 97515 

19 97527 97508 97544 97457 97468 97508 97468 

20 97507 97457 97465 97544 97463 97510 97507 

 
It is observed that buses at 69 kV transmission level are generally more effective to increasing 
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load margin than buses at 138 kV. But care should be taken not to over-compensate these buses as 

they might lead to excessive voltage magnitudes. To address this issue, an iterative approach was 

introduced where the optimization solution is found, which is the investment solution, and then each 

operational solution (as indexed by parameter k in the formulations of Chapters 3) corresponding to 

each contingency k is implemented for each post-contingency solution. For any bus having 

post-contingency voltage exceeding 1.06 pu, a maximum shunt MVAR constraint is developed, and 

the optimization is re-run with that constraint included. This procedure begins with a default set of 

MVAR constraints on each bus according to voltage level, as indicated in Table 4.7. 

Table 4.7 Maximum shunt compensation at various voltage levels 

Bus Base Voltage 
(KV) 

Maximum Shunt capacitance 
amount (MVar) 

69 30 

100 75 

115 120 

138 150 

230 200 

345 300 

500 300 

 
While the maximum shunt capacitance amount at 138 KV buses is 150 Mvar, some of the buses 

which are connected to the very sensitive low voltage 69 KV buses are constrained to have a 

maximum shunt capacitance amount of 75 Mvar under these set of contingencies, as it was found that 

more Mvar on those 138 KV buses resulted in unacceptable post-contingency over-voltages. Buses 

97506 (4BRYAN), 97507 (4COLSTTA), 97522 (4TABULAR) are examples of such 138 KV buses. 

In order to ensure that all good reactive resource locations are included, we selected the top 50 

candidate control locations for each contingency from the ranked list of sensitivities. (Tables 4.5 and 

4.6 show such a list, but in order to conserve space, Tables 4.5 and 4.6 provide only the top 20 

locations for each contingency). The final set of candidate locations was obtained as a union of all the 

locations for all critical contingencies considered for the equilibrium restoration problem. The union 

of all the candidate locations provided an initial set of 64 candidate location buses (many locations 
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were in the ranked lists of more than one contingency), as shown in Table 4.8. 

However, it was also found that mixed integer programming (MIP) optimization software we are 

using (CPLEX) is so efficient that reduction in the number of locations is unnecessary beyond a point. 

It is estimated that reasonable MIP running time can be obtained for up to 500 candidate locations, 

well in excess of what a standard planning problem might require. 

Table 4.8 Initial candidate control location set - stage1 MIP for planning problem # 1 

S No Bus # Bus Name 
Base 
KV 

S No Bus # Bus Name 
Base 
KV 

1 97453 4DOBBIN 138 33 97507 4COLSTTA 138 

2 97454 4WALDEN 138 34 97508 4NAVSOTA 138 

3 97455 4METRO2 138 35 97509 4SPEEDWY 138 

4 97457 4LONGMIR 138 36 97510 4SOTA  1 138 

5 97458 4CONAIR 138 37 97511 2TESCO 69 

6 97459 4CONROE 138 38 97512 4PEE DEE 138 

7 97460 4CRYSTAL 138 39 97513 7GRIMES 345 

8 97461 4LEWIS 138 40 97514 4GRIMES 138 

9 97462 5L523T58 138 41 97515 2CALVERT 69 

10 97463 4OAKRIDG 138 42 97516 2HEARNE 69 

11 97464 4PANORAM 138 43 97517 2TXHEARN 69 

12 97465 4PLANTAT 138 44 97519 4GEORGIA 138 

13 97466 4SHEAWIL 138 45 97522 4TUBULAR 138 

14 97467 4PORTER 138 46 97523 2APLHERN 69 

15 97468 4GOSLIN 138 47 97524 2IN.AT$T 69 

16 97469 4APRILTX 138 48 97525 2HUMBHRN 69 

17 97470 4LFOREST 138 49 97526 4MAG AND 138 

18 97471 4CANEYCK 138 50 97527 2SINHERN 69 

19 97480 L558T485 138 51 97533 4NEWCANY 138 

20 97481 4CEDAR 138 52 97538 8LNG 413 138 

21 97482 4CINCINT 138 53 97539 4WDHAVN 138 

22 97483 4GOREE 138 54 97540 4EVGRN 138 

23 97484 4HUNTSVL 138 55 97544 4ALDEN 138 

24 97486 4WYNTEX 138 56 97545 4LACON 138 

25 97487 4MT.ZION 138 57 97546 7FRONTR 345 

26 97488 4TEMCO 138 58 97551 4CEDHILL 138 

27 97500 2INDEPEN 69 59 97554 GRMXF 345 

28 97502 2ANAVSOT 69 60 97555 4BISHOP 138 

29 97503 2SOMERVL 69 61 97566 4TAMINA 138 

30 97504 2BRYAN B 69 62 97567 6PORTER 230 

31 97505 2BRYAN A 69 63 97570 4DRYCRK 138 

32 97506 4BRYAN 138 

 

64 97721 CHJC_SER 230 
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4.4.2 Control Cost Information 

As discussed in the previous chapters a cost model similar to what has been mentioned in [20] has 

been used, where the investment cost of shunt capacitor is modeled as two components: fixed 

installation cost and variable operating cost. Table 4.9 indicates that while the operating cost in 

$/MVar is constant for all the voltage levels; the fixed cost varies at different voltage levels with the 

installation cost at highest voltage level the highest. 

Table 4.9 Cost formulation at various voltage levels 

Cost Information2 

Bus Base Voltage 
level (KV) 

Fixed Cost (Million $) 
Variable Cost (Million 

$/MVar) 
69 0.025 0.41 

100 0.05 0.41 

115 0.07 0.41 

138 0.1 0.41 

230 0.28 0.41 

345 0.62 0.41 

500 1.3 0.41 

 
4.4.3 Required Margin 

In the case of severe contingencies that lead to voltage instability, the performance index is load 

margin.  The bifurcation parameter λ must reach 1 or in other words, the load margin must be 0 in 

order to simulate the line contingency. So planning is done until that criterion is solved, so that 

sufficient reactive resource is obtained that can withstand such a severe contingency and not result in 

voltage instability.  

The amount of margin necessary under each contingency needed is input to the optimization 

model so that sufficient amount of capacitor can be switched in to restore solvability. The expression 

for computing the amount of load margin LM∆  needed under a particular contingency is: 

**** **** QwPwQwPw j

q

jj

p

ji

q

ii

p

i
LM +++=∆                 (4.1) 

                                                        
2 Cost information at 230 KV and 500 KV levels are given in [20], extrapolated to get the cost information at 

the other voltage levels. 
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where P* and Q* are the real and reactive power injections at the parameterized branch at the 

pre-contingency3 operating point, i and j indicate the buses connected by the parameterized branch 

that has to be finally removed, and w
p

i
 is the scaled left eigenvector component corresponding to the 

real power at bus i, and w
q

i
 is the scaled left eigenvector component corresponding to the reactive 

power at bus i.  

4.4.4 Optimal Allocation 

After obtaining all the necessary inputs such as critical contingencies, the bifurcation sensitivities, 

amount of increase in load margin, cost information etc, the final step in the planning is to solve the 

MIP optimization with the objective of minimizing the total reactive resource allocation cost while 

satisfying the required constraint of having enough load margin for each contingency, which is 0 in 

our case indicating power system solvability. The optimization problem is solved iteratively, as a 

result of the fact that we utilize linear sensitivities to characterize nonlinear relationships. The result 

from the first iteration is provided in Table 4.10.  

Table 4.10 Optimal allocation from first iteration for equilibrium restoration problem 

Bus No Name Base KV Amount if (p.u) of B (or p.u. Q injection) 

   Generator outage at bus 97451 

   # 1 # 2 # 3 # 4 # 5 # 6 # 7 

97457 4LONGMIR 138 1 1 0.65 0.775 0.6 1 1.5 

97455 4METRO2 138 0 0 0 0 0 0 0.88 

   Generator outage at bus 97452 

   # 1 # 2 # 3 # 4 # 5 # 6 # 7 

97457 4LONGMIR 138 0.95 1 0.65 0.775 0.627 1 1.5 

97455 4METRO2 138 0 0 0 0 0 0 0.7 

 

The solution provided in Table 4.10 was validated according to the following procedure. For each 

N-G-T contingency, the generation outage was simulated, with automatic readjustments (switched 

shunts, taps, and tie line control) enabled. All such adjustments were then frozen, and the branch 

                                                        
3 For an N-G-T contingency, the operating point for which this calculation is done is the one corresponding 

to after the generator outage but before the branch outage. 
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outage was simulated with automatic readjustments disabled, but with the Table 4.10 planning 

solution modeled for the particular branch contingency.  

Following this validation procedure, it was observed that all contingencies do solve for the 

solution provided in Table 4.10, except the contingency 7 (345 KV tie line from area 151 EES to 520 

CESW) under both generator outages. To address this unsolved contingency, a second optimization 

iteration was performed using updated sensitivities and cost information. In performing this iteration, 

we desire to determine how much additional reactive compensation is needed at each bus, relative to 

the solution identified in the first iteration. Therefore, the fixed costs are made 0 for buses receiving 

reactive compensation in the previous iteration, since it is assumed that the fixed cost of installation is 

already incurred for these locations. Buses 97457 and 97455 are such buses. Furthermore, for these 

buses receiving reactive compensation in the previous iteration, the maximum compensation amount 

needs to be adjusted to ensure the compensation will not exceed the actual maximum amount.  

The bifurcation parameter sensitivities for the capacitor re-enforced system are obtained for the 

branch contingency under each generator outage that needs further compensation. Then the initial set 

of candidate locations are again found, and the optimal reactive power solution is computed. The 

result from the second optimization iteration is updated to the first optimization to get the updated 

amount of compensation that is provided in Table 4.11. 

Table 4.11 Optimal allocation from second iteration for equilibrium restoration problem 

Bus 
Base 
KV 

Amount of per unit susceptance, B 
(or p.u. Q injection) 

 
Contingency # 7 
 (Gen at 97451) 

Contingency # 7  
(Gen at 97452) 

97455 4METRO2 138 1.15 1.10 
 

So the final result for the equilibrium restoration problem, to restore power system solvability for 

contingencies resulting in voltage instability (contingencies 1-7 in Table 4.4) is provided in Table 

4.12. The total investment cost for this solution is 1.2865 M $. 
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Table 4.12 Final optimal allocation solution for equilibrium restoration 

 

 

 

4.5 Reactive Resources to Increase Voltage Stability Margin 

After the reactive power planning has been done to restore the equilibrium under those 

contingencies that result in voltage instability, the loading margin under those contingencies is just 

above 0, in violation of the margin criteria (in this case, 5%). Along with these contingencies, there 

are also other contingencies that did not require equilibrium restoration but are in violation of the 

margin criteria. So the problem addressed in this section involves finding a minimum cost solution to 

plan reactive control to increase the voltage stability margin to at least 5% under a given set of 

contingencies, none of which satisfy the margin requirement. The approach taken in this step is 

consistent with that described in Chapter 3. 

4.5.1 First Iteration Optimization 

As in the second iteration of the equilibrium restoration problem described in Subsection 4.4.4, it 

is necessary to modify input data for buses receiving reactive compensation in previous steps, i.e., 

fixed costs should be 0, and the maximum compensation amount needs to be adjusted to ensure the 

compensation will not exceed the actual maximum amount. This was done for buses 97457 

4LONGMIR and 97455 4METRO2. Once the initial set of candidate locations is found, the margin 

sensitivities at every candidate location and the voltage stability margin under every contingency are 

provided as input to the MIP optimizer to identify the optimal reactive compensation necessary to 

satisfy the margin criteria for all identified contingencies. 

It is determined from a first optimization run, and confirmed by simulation, that for all 

contingencies which did not result in voltage instability (i.e., those contingencies that are stable but 

Bus Base KV Amount if (p.u) of B (or p.u. Q injection) 

97457 4LONGMIR 138 1.5 

97455 4METRO2 138 1.15 
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violated margin criteria, which are rows 8-28 in Table 4.4), the solution to the equilibrium restoration 

problem provides enough additional reactive support to ensure all of these contingencies satisfy the 

margin criteria. That is, the optimal solution of the equilibrium restoration problem, placing 

capacitors at locations 97457 4LONGMIR and 97455 4METRO2, increases margin for these less 

severe contingencies above 5%. So no further planning for reactive resources is needed for these 

contingencies. However, the contingencies that were voltage unstable (rows 1-7 of Table 4.4), now 

having equilibrium just restored and therefore margin just exceeding 0, require additional margin to 

satisfy the 5% (103 MW) criteria.  

The candidate location set for this planning problem was found out following a similar approach 

to what was described earlier for the equilibrium restoration optimization problem. The required 

margin for each contingency was set to satisfy the 5% requirement. Results of this first iteration 

optimization which is updated to the earlier amount at every location are provided in Table 4.13. 

Table 4.13 Optimal allocation from first iteration to increase margin 

Bus No Name Base KV Amount if (p.u) of B (or p.u. Q injection) 

   Generator outage at bus 97451 & 97452 

   # 1 # 2 # 3 # 4 # 5 # 6 # 7 

97457 4LONGMIR 138 1.5 1.5 1.2 0.775 1.5 1.5 1.5 

97455 4METRO2 138 0 0.55 0.7 0 0.45 0.7 1.5 

97464 4PANORAM 138 0.45 0 0 0.65 0 0 0.7 

 

To validate the solution of Table 4.13, all contingencies that addressed (rows 1-7 of Table 4.4) 

were tested via simulation after updating the system with the respective amount of compensation 

under any contingency identified by MIP. It was determined that none of them satisfied the minimum 

margin criterion. We therefore performed a second iteration (successive MIP) to increase margin for 

these contingencies. 

4.5.2 Successive Iteration Optimization 

The second iteration optimization to increase margin uses margin sensitivities from the system 

reinforced by the reactive resources identified in the first iteration optimization. Candidate locations 
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were again the same as the candidate locations used in the equilibrium restoration process. The 

amount obtained from the second iteration was good enough for contingencies 1-6 that the minimum 

criteria were satisfied, except for contingency 7 under both the generator outages. Then another 

successive MIP was performed to plan further for this particular contingency. This procedure was 

carried out till the minimum steady state stability criteria were satisfied under all the contingencies.  

Table 4.14 Final solution for optimal allocation to increase margin 
 

No 
Transmission 

Line 
Bus Name KV Capacitor Allocation (Mvar) 

 From To From To  97457 97455 97464 97544 

1 97463 97467 4OAKRIDG 4PORTER 138 1.5 0 1.5 0.25 

2 97478 97721 6JACINTO CHJC_SER 230 1.5 1.5 0.75 0 

3 97567 97714 6PORTER 6CHINA 230 1.2 1.5 0 0.85 

4 97691 97717 8CYPRESS 8HARTBRG 500 1.0 1.2 1.25 0 

5 97714 97716 6CHINA 6SABINE 230 1.5 1.5 0.5 0 

6 97714 97721 6CHINA CHJC_SER 230 1.5 1.5 0.9 0 

7 53526 97513 CROCKET7 7GRIMES 345 1.5 1.5 1.5 1 

8 97461 97464 4LEWIS 4PANORAM 138 0.3 0 0 0 

9 97514 97526 4GRIMES 4MAG AND 138 0.65 0 0 0 

10 97513 97546 7GRIMES 7FRONTR 345 0.85 0 0 0 

11 97689 97714 6AMELIA 6CHINA 230 0.68 0 0 0 

12 97690 97697 4CYPRESS 4HONEY 138 0.65 0 0 0 

13 97455 97463 4METRO2 4OAKRIDG 138 0.57 0 0 0 

14 97510 97526 4SOTA  1 4MAG AND 138 0.55 0 0 0 

15 97493 97758 4MENARD 4BRAGG 138 0.52 0 0 0 

16 97532 97627 4HICKORY 4EASTGAT 138 0.45 0 0 0 

17 97697 97758 4HONEY 4BRAGG 138 0.52 0 0 0 

18 97508 97510 4NAVSOTA 4SOTA  1 138 0.5 0 0 0 

19 97532 97533 4HICKORY 4NEWCANY 138 0.4 0 0 0 

20 97627 97723 4EASTGAT 6L533TP8 138 0.5 0 0 0 

21 97632 97723 4ADAYTON 6L533TP8 138 0.5 0 0 0 

22 97717 97916 8HARTBRG 8NELSON 500 0.5 0 0 0 

23 97490 97493 4GULFLIV 4MENARD 138 0.5 0 0 0 

24 97692 97706 4CHEEK 4SO.BMT. 138 0.47 0 0 0 

25 97518 97685 4CAMDEN 4DEER  1 138 0.35 0 0 0 

26 97487 97514 4MT.ZION 4GRIMES 138 0.4 0 0 0 

27 97490 97494 4GULFLIV 4POCO  1 138 0.4 0 0 0 

28 97633 97692 4BDAYTON 4CHEEK 138 0.4 0 0 0 

 

Table 4.14 provides the final solution after updating the solution obtained from all the successive 
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optimizations. This solution is the final solution of the steady state planning problem to ensure the 

system satisfies margin criteria for all contingencies. The total investment cost is 2.665 M $. 

4.5.3 Optimal Allocation Solution for Static VAR Planning 

This section presents results for optimal allocation of MSCs to solve steady state voltage 

instability issues in the study area. The method described in the previous chapter was implemented on 

the large scale power system for contingencies that lead to voltage instability or have 

post-contingency voltage stability margin less than the minimum criteria. The method selected 4 

buses in the subsystem to solve the voltage instability problems in that area. All N-1 and N-G-T 

contingencies for 6 different stress directions were considered. 

The final optimal solution depends to a great deal on the list of contingencies considered. If only 

contingencies 5, 6 and 8-28 are considered (these are contingencies that violate stability margin but 

exclude contingencies that result in voltage instability), then the final solution includes three 69 KV 

buses and two 138 KV buses with the total cost being 1.3 M$, as shown in Table 4.15. 

Table 4.15 Final solution for static Vars considering subset of contingencies 

Bus No Bus Name Base KV Amount of p.u. Q injection 

97501 2CALDWEL 69 0.25 

97504 2BRYAN B 69 0.25 

97511 2TESCO4 69 0.25 

97506 4BRYAN 138 1 

97507 4COLSTTA 138 0.732 

 
In validating the solution of Table 4.15 we observe that although this solution has acceptable 

loading margins, it results in post-contingency voltage magnitudes of 1.15 at the three 69 kV buses 

where we have located reactive compensation, clearly unacceptable. To adjust for this, one would 

need to tighten the maximum reactive compensation allowable at these buses and resolve the MIP. 

                                                        
4 Sometimes it is observed that there are a number of candidate locations that have same cost and similar 

margin sensitivities forming a cluster of locations where any location is equally effective. In such cases the 
planner can consider other factors like geographic location, limitation on maximum size that can be installed at 
those locations, etc., before making the final decision. In this case capacitor re-enforcement at buses 97502, 
97522, 97525, 97511 are almost equally effective. 
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We do not make this adjustment here because Table 4.15 is illustrative only, i.e., it was obtained for 

only a subset of contingencies.  

Table 4.16 below shows the final solution when all contingencies were considered. The solution 

satisfies reliability criteria for the set of line contingencies under both sets of generator outages, i.e., 

all 56 N-G-T cases listed in the contingency list of Table 4.4. The voltage stability margin for all 

considered contingencies is now at least 5%, and the total investment cost is 2.665 M $. It is 

interesting to note that the post-contingency high voltage problem observed for the solution of Table 

4.15 does not occur for the solution of Table 4.16. This is due to the fact that the solution of Table 

4.16 contains no 69 kV buses (which have greater voltage magnitude sensitivity to reactive injection 

than the 138 kV buses). The reason the solution of Table 4.16 contains no 69 kV buses is that the 

contingencies for which it is developed require a significantly high amount of reactive resource. The 

discrete nature of the MIP favors 138 kV buses in this case because, despite the lower cost per unit Q 

for 69 kV buses, it would require too many of them to satisfy the loading margin (since 69 kV buses 

have tighter maximum Q constraints than do 138 kV buses in order to avoid high voltage problems), 

incurring the high fixed cost for each additional 69 kV bus. This is a reasonable and satisfying feature 

of the MIP. 

Table 4.16 Final solution for static vars considering all contingencies 

Bus No. Bus Name Base KV Amount of p.u. Q injection 

    

97457 4LONGMIR 138 1.5 
97455 4METRO2 138 1.5 

97464 4PANORAM 138 1.5 

97544 4ALDEN 138 1 
 

 
The results show the effectiveness of the method to find optimal allocation of static compensation 

against post contingency steady state voltage instability problems. In the next section, we present 

results to develop a coordinated control plan against steady state as well dynamic voltage stability 

problems to optimally allocate a mix of static and dynamic Var sources.  
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4.6 Coordinated Reactive Resource Planning for Static and Dynamic Problems  

The dynamic data includes dynamic models for generators, exciter and governor systems. An 

appropriate load model is used for detailed voltage stability analysis in the control area, where load at 

every bus is portioned as 50% motor load and 50% ZIP load with the motor loads further split into 

three different kinds, i.e., large, small, and trip motors (1/3 each). The ZIP model for the remaining 

50% load is modeled as 50% constant impedance and 50% constant current for P load and 100% 

constant impedance for Q load. Time domain simulation is used to study the system dynamic 

performance. The sensitivity information of the system performance (dip magnitude and duration) 

with respect to the reactive control device (SVC) is important in order to optimally allocate the 

reactive resources. PTI PSS/E dynamics package is the software tool used for this work. 

4.6.1 Contingency Screening and Analysis 

The contingency set for our study was chosen as the contingencies that lead to steady state post 

contingency voltage instability. These contingencies (top 7 contingencies in Table 4.4) were the ones 

which resulted in relatively low bus voltages even after installing the static reactive resources of 

Section 4.5. 

These contingencies were all N-G-T. These contingencies were simulated by removing a generator, 

resolving the power flow case, and then running time domain simulation for the circuit outage. Time 

domain simulations were run by applying a 3-phase fault at t=0 at one end of the transmission circuit 

and then clearing the fault and the circuit at 6 cycles (t = 0.1s). The simulation was run for about 3 sec 

to detect any of the following transient voltage problems: 

1. Slow voltage recovery problem: voltage recovery time (time taken to reach 80% of initial 

voltage after fault has been cleared) > 20 cycles, i.e., 0.333s. 

2. Transient voltage dip magnitude problem: after the voltage recovery has taken place, i.e., dip 

magnitude > 25% of initial voltage. 

3. Transient voltage dip duration problem: voltage dip of > 20% of initial voltage with a dip 
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duration of > 20 cycle. 

A slow voltage recovery problem can lead to tripping of induction motors. So it is very important to 

prevent the voltage recovery problem. The nature of this problem demands a fast acting Var source. 

Hence static Var compensators (SVCs) must be employed. Yet, there may also be static voltage 

problems to which SVCs can contribute. Hence an optimal combination of SVCs and static capacitors 

is desired, to address both post contingency voltage instability and transient voltage dip problems. 

Chapter 3 develops the procedure, which is now applied to a larger system. 

When time domain simulation was done to analyze all 7 severe contingencies, it was found that 

none of them resulted in transient voltage dip magnitude and duration problem (transient after voltage 

recovery). But all the contingencies lead to a slow voltage recovery due to the presence of induction 

motor loads. This slow voltage recovery resulted in the tripping of induction motor at the respective 

buses. The following summarizes results of each contingency. In each case, the contingency is 

identified, the buses having low voltage dips below 20% of initial voltage and recovery time 

exceeding 20 cycles are identified, and the recovery time is given. 

Contingency 1 

Generator at 97451 or 97452 is outaged and the transmission line between buses 97463-97467 is 

tripped due to fault. Table 4.17 lists those buses resulting in transient voltage dip violation. 

Table 4.17 Buses resulting in transient voltage dip violation for contingency 1 

Bus Number   Bus Name Recovery time Cycles 

97463 4OAKRIDG 0.841 50.46 

97455 4METRO2 0.771 46.26 

97468 4GOSLIN 0.694 41.64 

97544 4ALDEN 0.614 36.84 

 
Contingency 2 

Generator at 97451 or 97452 is outaged and the transmission line between buses 97478-97721 is 

tripped due to fault. Table 4.18 lists those buses resulting in transient voltage dip violation. 

 



www.manaraa.com

 

 

 

84 

Table 4.18 Buses resulting in transient voltage dip violation for contingency 2 

Bus  
Number 

Bus  
Name 

Recovery  
time 

cycles 
Bus  

Number 
Bus  

Name 
Recovery  

time 
cycles 

97468 4GOSLIN 0.495 29.7 97482 4CINCINT 0.386 23.16 

97544 4ALDEN 0.492 29.52 97484 4HUNTSVL 0.386 23.16 

97455 4METRO2 0.491 29.46 97527 2SINHERN 0.385 23.1 

97463 4OAKRIDG 0.467 28.02 97530 4WALKER 0.385 23.1 

97460 4CRYSTAL 0.439 26.34 97481 4CEDAR 0.384 23.04 

97521 4JEFCON 0.439 26.34 97485 L558TP91 0.384 23.04 

97520 4FWPIPE 0.438 26.28 97555 4BISHOP 0.382 22.92 

97456 4SECURTY 0.436 26.16 97536 4RIVTRIN 0.381 22.86 

97458 4CONAIR 0.436 26.16 97486 4WYNTEX 0.379 22.74 

97462 5L523T58 0.436 26.16 97503 2SOMERVL 0.378 22.68 

97459 4CONROE 0.435 26.1 97454 4WALDEN 0.377 22.62 

97542 4JAYHAWK 0.428 25.68 97512 4PEE DEE 0.377 22.62 

97466 4SHEAWIL 0.424 25.44 97480 L558T485 0.376 22.56 

97457 4LONGMIR 0.421 25.26 97500 2INDEPEN 0.373 22.38 

97475 4CLVELND 0.421 25.26 97516 2HEARNE 0.373 22.38 

97464 4PANORAM 0.42 25.2 97517 2TXHEARN 0.372 22.32 

97461 4LEWIS 0.418 25.08 97524 2IN.AT$T 0.37 22.2 

97465 4PLANTAT 0.418 25.08 97525 2HUMBHRN 0.37 22.2 

97545 4LACON 0.418 25.08 97528 4GULFTRN 0.369 22.14 

97471 4CANEYCK 0.416 24.96 97535 4CARLILE 0.369 22.14 

97543 4PECHCK# 0.414 24.84 97501 2CALDWEL 0.368 22.08 

97476 4JACINTO 0.413 24.78 97523 2APLHERN 0.367 22.02 

97538 8LNG 413 0.413 24.78 97566 4TAMINA 0.367 22.02 

97539 4WDHAVN 0.41 24.6 97467 4PORTER 0.366 21.96 

97479 4SHEPERD 0.407 24.42 97552 4ONLASKA 0.363 21.78 

97488 4TEMCO 0.407 24.42 97502 2ANAVSOT 0.36 21.6 

97540 4EVGRN* 0.407 24.42 97474 4HIGHTWR 0.355 21.3 

97453 4DOBBIN 0.406 24.36 97522 4TUBULAR 0.355 21.3 

97519 4GEORGIA 0.403 24.18 97537 4STALEY 0.354 21.24 

97478 6JACINTO 0.402 24.12 97492 4BLANCHD 0.352 21.12 

97551 4CEDHILL 0.402 24.12 97509 4SPEEDWY 0.352 21.12 

97483 4GOREE 0.397 23.82 97511 2TESCO 0.352 21.12 

97515 2CALVERT 0.396 23.76 97508 4NAVSOTA 0.351 21.06 

97534 4SPLENDR 0.396 23.76 97487 4MT.ZION 0.344 20.64 

97470 4LFOREST 0.394 23.64 97491 4LIVSTON 0.344 20.64 

97531 4APOLLO 0.391 23.46 97477 4TARKING 0.343 20.58 

97495 4RICH  1 0.39 23.4 97504 2BRYAN B 0.34 20.4 

97469 4APRILTX 0.386 23.16 97553 4BLDSPRG 0.34 20.4 

 

Contingency 3 

Generator at 97451 or 97452 is outaged and the transmission line between buses 97567-97714 is 
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tripped due to fault. Table 4.19 lists those buses resulting in transient voltage dip violation. 

Table 4.19 Buses resulting in transient voltage dip violation for contingency 3 

Bus Number Bus Name Recovery time cycles 

97455 4METRO2 0.36 21.6 

97468 4GOSLIN 0.36 21.6 

97544 4ALDEN 0.353 21.18 

97463 4OAKRIDG 0.344 20.64 

 
Contingency 4 

Generator at 97451 or 97452 is outaged and the transmission line between buses 97691-97717 is 

tripped due to fault. Table 4.20 lists those buses resulting in transient voltage dip violation. 

Table 4.20 Buses resulting in transient voltage dip violation for contingency 4 

Bus Number Bus Name Recovery time cycles 

97468 4GOSLIN 0.394 23.64 

97455 4METRO2 0.392 23.52 

97544 4ALDEN 0.392 23.52 

97463 4OAKRIDG 0.377 22.62 

97515 2CALVERT 0.376 22.56 

97459 4CONROE 0.357 21.42 

97527 2SINHERN 0.357 21.42 

97462 5L523T58 0.355 21.3 

97458 4CONAIR 0.354 21.24 

97465 4PLANTAT 0.347 20.82 

97539 4WDHAVN 0.343 20.58 

97516 2HEARNE 0.337 20.22 

97551 4CEDHILL 0.337 20.22 

97482 4CINCINT 0.336 20.16 

97457 4LONGMIR 0.335 20.1 

97517 2TXHEARN 0.335 20.1 

97530 4WALKER 0.335 20.1 

97481 4CEDAR 0.334 20.04 
 

Contingency 5 

Generator at 97451 or 97452 is outaged and the transmission line between buses 97714-97716 is 

tripped due to fault. Table 4.21 lists those buses resulting in transient voltage dip violation. 
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Table 4.21 Buses resulting in transient voltage dip violation for contingency 5 

Bus  
Number 

Bus  
Name 

Recovery  
time 

cycles 
Bus  

Number 
Bus  

Name 
Recovery 

time 
cycles 

97468 4GOSLIN 0.781 46.86 97532 4HICKORY 0.415 24.9 

97455 4METRO2 0.78 46.8 97503 2SOMERVL 0.412 24.72 

97544 4ALDEN 0.764 45.84 97516 2HEARNE 0.412 24.72 

97463 4OAKRIDG 0.743 44.58 97517 2TXHEARN 0.41 24.6 

97459 4CONROE 0.605 36.3 97484 4HUNTSVL 0.409 24.54 

97462 5L523T58 0.582 34.92 97525 2HUMBHRN 0.408 24.48 

97465 4PLANTAT 0.57 34.2 97481 4CEDAR 0.406 24.36 

97458 4CONAIR 0.563 33.78 97500 2INDEPEN 0.406 24.36 

97551 4CEDHILL 0.543 32.58 97542 4JAYHAWK 0.406 24.36 

97539 4WDHAVN 0.517 31.02 97482 4CINCINT 0.405 24.3 

97566 4TAMINA 0.502 30.12 97485 L558TP91 0.405 24.3 

97467 4PORTER 0.501 30.06 97530 4WALKER 0.405 24.3 

97533 4NEWCANY 0.485 29.1 97555 4BISHOP 0.405 24.3 

97461 4LEWIS 0.484 29.04 97523 2APLHERN 0.404 24.24 

97470 4LFOREST 0.484 29.04 97524 2IN.AT$T 0.402 24.12 

97545 4LACON 0.484 29.04 97512 4PEE DEE 0.401 24.06 

97464 4PANORAM 0.481 28.86 97486 4WYNTEX 0.4 24 

97457 4LONGMIR 0.48 28.8 97501 2CALDWEL 0.4 24 

97466 4SHEAWIL 0.479 28.74 97536 4RIVTRIN 0.4 24 

97520 4FWPIPE 0.47 28.2 97480 L558T485 0.397 23.82 

97469 4APRILTX 0.469 28.14 97502 2ANAVSOT 0.39 23.4 

97538 8LNG 413 0.469 28.14 97511 2TESCO 0.385 23.1 

97460 4CRYSTAL 0.468 28.08 97522 4TUBULAR 0.384 23.04 

97521 4JEFCON 0.468 28.08 97508 4NAVSOTA 0.38 22.8 

97471 4CANEYCK 0.464 27.84 97509 4SPEEDWY 0.38 22.8 

97454 4WALDEN 0.456 27.36 97528 4GULFTRN 0.378 22.68 

97488 4TEMCO 0.455 27.3 97535 4CARLILE 0.378 22.68 

97540 4EVGRN* 0.455 27.3 97475 4CLVELND 0.371 22.26 

97456 4SECURTY 0.447 26.82 97537 4STALEY 0.371 22.26 

97519 4GEORGIA 0.446 26.76 97552 4ONLASKA 0.369 22.14 

97453 4DOBBIN 0.443 26.58 97504 2BRYAN B 0.368 22.08 

97567 6PORTER 0.443 26.58 97479 4SHEPERD 0.362 21.72 

97515 2CALVERT 0.442 26.52 97487 4MT.ZION 0.358 21.48 

97531 4APOLLO 0.439 26.34 97495 4RICH  1 0.353 21.18 

97483 4GOREE 0.435 26.1 97505 2BRYAN A 0.351 21.06 

97543 4PECHCK# 0.432 25.92 97492 4BLANCHD 0.35 21 

 

Contingency 6 

Generator at 97451 or 97452 is outaged and the transmission line between buses 97714-97721 is 

tripped due to fault. Table 4.22 lists those buses resulting in transient voltage dip violation. 
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Table 4.22 Buses resulting in transient voltage dip violation for contingency 6 

Bus 
Number 

Bus Name 
Recovery 

time 
cycles 

Bus 
Number 

Bus Name 
Recovery 

time 
cycles 

97468 4GOSLIN 0.942 56.52 97474 4HIGHTWR 0.48 28.8 

97455 4METRO2 0.938 56.28 97477 4TARKING 0.48 28.8 

97544 4ALDEN 0.93 55.8 97484 4HUNTSVL 0.476 28.56 

97463 4OAKRIDG 0.894 53.64 97485 L558TP91 0.474 28.44 

97459 4CONROE 0.818 49.08 97482 4CINCINT 0.473 28.38 

97462 5L523T58 0.81 48.6 97530 4WALKER 0.473 28.38 

97458 4CONAIR 0.801 48.06 97503 2SOMERVL 0.472 28.32 

97465 4PLANTAT 0.793 47.58 97516 2HEARNE 0.472 28.32 

97460 4CRYSTAL 0.774 46.44 97481 4CEDAR 0.471 28.26 

97521 4JEFCON 0.774 46.44 97517 2TXHEARN 0.47 28.2 

97456 4SECURTY 0.772 46.32 97536 4RIVTRIN 0.47 28.2 

97520 4FWPIPE 0.769 46.14 97525 2HUMBHRN 0.468 28.08 

97551 4CEDHILL 0.767 46.02 97555 4BISHOP 0.468 28.08 

97542 4JAYHAWK 0.76 45.6 97500 2INDEPEN 0.466 27.96 

97475 4CLVELND 0.749 44.94 97486 4WYNTEX 0.464 27.84 

97539 4WDHAVN 0.731 43.86 97512 4PEE DEE 0.464 27.84 

97476 4JACINTO 0.723 43.38 97523 2APLHERN 0.464 27.84 

97534 4SPLENDR 0.715 42.9 97480 L558T485 0.463 27.78 

97466 4SHEAWIL 0.71 42.6 97524 2IN.AT$T 0.462 27.72 

97531 4APOLLO 0.708 42.48 97528 4GULFTRN 0.46 27.6 

97543 4PECHCK# 0.672 40.32 97535 4CARLILE 0.46 27.6 

97566 4TAMINA 0.664 39.84 97501 2CALDWEL 0.459 27.54 

97467 4PORTER 0.652 39.12 97552 4ONLASKA 0.455 27.3 

97471 4CANEYCK 0.649 38.94 97502 2ANAVSOT 0.451 27.06 

97461 4LEWIS 0.637 38.22 97567 6PORTER 0.448 26.88 

97545 4LACON 0.636 38.16 97522 4TUBULAR 0.447 26.82 

97478 6JACINTO 0.614 36.84 97511 2TESCO 0.444 26.64 

97464 4PANORAM 0.604 36.24 97509 4SPEEDWY 0.443 26.58 

97457 4LONGMIR 0.593 35.58 97492 4BLANCHD 0.442 26.52 

97470 4LFOREST 0.572 34.32 97508 4NAVSOTA 0.442 26.52 

97538 8LNG 413 0.57 34.2 97491 4LIVSTON 0.435 26.1 

97479 4SHEPERD 0.568 34.08 97537 4STALEY 0.43 25.8 

97469 4APRILTX 0.542 32.52 97553 4BLDSPRG 0.426 25.56 

97488 4TEMCO 0.539 32.34 97504 2BRYAN B 0.425 25.5 

97540 4EVGRN* 0.539 32.34 97487 4MT.ZION 0.419 25.14 

97519 4GEORGIA 0.526 31.56 97489 4ISRAEL 0.414 24.84 

97454 4WALDEN 0.522 31.32 97494 4POCO  1 0.413 24.78 

97533 4NEWCANY 0.519 31.14 97510 4SOTA  1 0.407 24.42 

97453 4DOBBIN 0.518 31.08 97505 2BRYAN A 0.405 24.3 

97495 4RICH  1 0.517 31.02 97532 4HICKORY 0.404 24.24 

97483 4GOREE 0.513 30.78 97506 4BRYAN 0.374 22.44 

97515 2CALVERT 0.506 30.36 97529 4MAGROVE 0.337 20.22 
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Contingency 7 

Generator at 97451 or 97452 is outaged and the transmission line between buses 53526-97513 is 

tripped due to fault. Table 4.23 lists those buses resulting in transient voltage dip violation. 

Table 4.23 Buses resulting in transient voltage dip violation for contingency 7 

Bus Number Bus Name Recovery time cycles 

97515 2CALVERT 0.366 21.96 

97527 2SINHERN 0.343 20.58 

 

Table 4.24 ranks the 7 contingencies based on their severity, where severity is quantified in terms 

of worst-case recovery times. It can be expected that the most severe contingencies will drive the 

amount of dynamic Vars needed. 

Table 4.24 Contingency ranking in terms of worst-case recovery times 

Bus Numbers Bus Names Contingency 
No From To From To 

kV Rank 

1 97463 97467 4OAKRIDG 4PORTER 138 2 

2 97478 97721 6JACINTO CHJC_SER 230 4 

3 97567 97714 6PORTER 6CHINA 230 6 

4 97691 97717 8CYPRESS 8HARTBRG 500 7 

5 97714 97716 6CHINA 6SABINE 230 3 

6 97714 97721 6CHINA CHJC_SER 230 1 

7 53526 97513 CROCKET7 7GRIMES 345 5 

 

4.6.2 Candidate Locations for SVC 

As indicated by the tables above, there are quite a number of buses having transient voltage dip 

violations. Many of these buses have induction motor load connected to them that trip under these 

conditions. The following criteria were used to identify candidate locations for SVCs to mitigate this 

problem: 

1. Buses for which one or more contingencies result in: 

• the bus being among the top 5 worst voltage dips and 

• the bus has induction motor load that trips 
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2. Buses must have high voltage stability margin sensitivity so that they can also increase the 

stability margin when installed; this criterion provides that most of the buses that were part of 

the steady state solution to increase the post contingency steady state voltage stability margin 

are candidate SVC locations. 

Application of the above criteria resulted in a list of candidate locations as given in Table 4.25. 

Table 4.25 Candidate SVC locations 

Candidate Bus Name Zone KV 

97455 4METRO2 102 138 

97468 4GOSLIN 102 138 

97544 4ALDEN 102 138 

97457 4LONGMIR 103 138 

97464 4PANORAM 100 138 

97459 4CONROE 103 138 

97463 4OAKRIDG 102 138 

 
4.6.3 Sensitivities 

To compute the optimal mix of static and dynamic Vars, we must obtain the sensitivity of 

recovery time to the SVC capacity. The sensitivity calculation is described in Section 3.3.2. For every 

candidate location considered at least two time domain simulation solutions are obtained, one with 

SVC having capacity of B1 Mvar and another with SVC having capacity of B2 Mvar. Then the 

difference in voltage dip recovery time is obtained, and the sensitivity is calculated per equation (3.2). 

The first time domain simulation was run with an SVC capacity of 300 Mvar. It was observed that 

the top 5 buses in the list of candidate location in Table 4.25 had a better effect on voltage recovery 

under most of the contingencies than the last two. So, the last two were dropped from the list to 

reduce computation. Then another set of time domain simulations was run with SVC capacity limit 

being 150 Mvar for the first 5 candidate locations. Sensitivities were then computed for every bus 

voltage dip change under every contingency. The table below shows the sensitivity of SVC placement 

at buses 97455, 97468 and 97544 on the bus voltage characteristics of buses 97463, 97455, 97468, 

97544 (most severe voltage dip buses) for contingency 1. Similarly sensitivities can be calculated for 
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all the affected bus voltages with respect to SVC placement under every contingency. 

Table 4.26 Recovery time sensitivity (∆τirecovery/∆BjSVC) for Contingency 1 

Bus (i) for which recovery time is measured SVC placement bus (j) 

97463 97455 97468 97544 

97455 0.1947853 0.180272 0.149442 0.129305 

97468 0.1847081 0.177179 0.149262 0.131107 

97544 0.1738613 0.158503 0.142828 0.129502 

 

4.6.4 Stage 1 Optimization 

The obtained sensitivities along with the performance measures in terms of dip duration violation 

are used in the MIP optimization to find the optimal allocation of dynamic Vars. To find the optimal 

mix of static and dynamic Var sources to mitigate both steady state and dynamic voltage stability 

issues, we also input voltage instability margin sensitivities with respect to MSCs and SVCs at every 

bus along with the list of contingencies that require margin stability increase. The result of the stage 1 

MIP optimization is given in Table 4.27. 

Table 4.27 Result of first iteration stage 1 MIP optimization 

Contingency  SVC (pu MVAR) 

Bus Number Bus Name 
No. 

From To From To 
kV 

At 97455 
4METRO2 

At 97568 
4GOSLIN 

1 97463 97467 4OAKRIDG 4PORTER 138 3 0.85 

2 97478 97721 6JACINTO CHJC_SER 230 3 0.8 

3 97567 97714 6PORTER 6CHINA 230 3 0.7 

4 97691 97717 8CYPRESS 8HARTBRG 500 1.7 0 

5 97714 97716 6CHINA 6SABINE 230 3 1.5 

6 97714 97721 6CHINA CHJC_SER 230 3 1.53 

7 53526 97513 CROCKET7 7GRIMES 345 3 0.95 

 

Although the stage 1 MIP optimization is formulated to admit both capacitors and SVCs in 

finding a minimum cost solution which satisfies both voltage instability requirements and transient 

voltage dip requirements, we obtain here a solution which does not select shunt capacitor at all, i.e., 
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the solution provided by the MIP optimization selects only SVC. Investigation indicates the reason 

for this is that the transient voltage dip problems are so severe that the amount of SVC required to 

solve them is also sufficient to mitigate the voltage stability problems.  

Stage 1 optimization is designed to identify a solution for post contingency voltage instability 

(finding equalibria) and transient voltage dip violations. Once a stage 1 solution is identified, then 

another MIP optimization stage, stage 2, is performed to increase voltage stability margin beyond 5% 

as necessary. Before doing that, however, we performed simulations to validate the obtained solution. 

It was found that the SVCs placed at the two buses do solve the steady state voltage instability, 

and in fact increase the post contingency stability margin well beyond 5% margin requirement. Post 

contingency voltage stability margin after placing the two SVCs is provided in Table 4.28. 

Table 4.28 Voltage instability margin for stage 1 solution 

Contingency 

Bus Numbers Bus Names 
No 

From To From To 
kV 

Stability 
Margin 
(  %) 

1 97463 97467 4OAKRIDG 4PORTER 138 9.64 

2 97478 97721 6JACINTO CHJC_SER 230 9.16 

3 97567 97714 6PORTER 6CHINA 230 9.4 

4 97691 97717 8CYPRESS 8HARTBRG 500 8.68 

5 97714 97716 6CHINA 6SABINE 230 9.4 

6 97714 97721 6CHINA CHJC_SER 230 8.92 

7 53526 97513 CROCKET7 7GRIMES 345 5.1 

 
When time domain simulations were done to validate, it was found that contingencies 1, 2, 5, 6, 

and 7 still had buses that violated the minimum recovery time requirement, resulting in tripping of 

some motors. To illustrate effect of the first iteration stage 1 solution, Figure 4.1 compares voltage at 

bus 97455 with and without the SVC solution from the first iteration stage 1 optimization. Although 

the SVCs improve the voltage, recovery time still exceeds 20 cycles.  
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Legend: Pink – Voltage profile before SVC placement; 

     Red – Voltage profile after SVC placement 
Figure 4.1 Bus 97455 voltage profile under contingency 1 with SVC after stage 1 MIP 

 
For additional comparison, Figure 4.2 shows the five most severe bus voltage plots for 

contingency 2 without SVCs, and Figure 4.3 shows plots for these same buses for contingency 2, but 

with the SVCs from the first iteration stage 1 optimization. We observe significant improvement in 

Figure 4.3 relative to Figure 4.2, but voltage dip recovery time still exceeds 20 cycles.  

To further illustrate, Figure 4.4 compares, for contingency 3, bus voltage plots with and without 

SVCs, and it also provides SVC outputs. The SVCs placed at buses 97455 and 97468 produced an 

output of 290 Mvar and 75 Mvar respectively, and it is seen that in this case the transient voltage dip 

recovery problem has been solved. Plots for the other contingencies are similar and so are not 

provided. 
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Figure 4.2 Voltage profiles of some buses under contingency 2 without SVC 

 

 
Figure 4.3 Voltage profiles of some buses under contingency 2 with SVC after Stage 1 result 
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Legend: Pink – voltage before control; Green – Voltage after SVC placement; Dark blue – SVC 

output at bus 97455; Light blue – SVC output at Bus 97468. 
Figure 4.4 Voltages under contingency 3 before and after first iteration SVC placement 

4.6.5 Successive Optimization 

As indicated in Figure 4.1 and Figure 4.3, voltage dip recovery time for some buses is 

insufficient, even after implementing the SVC solution from the first iteration stage 1 optimization. 

So a second iteration of stage 1 optimization is required. In the second iteration of the stage 1 

optimization, we fixed bus 97455 SVC at its maximum capacity of 3 p.u since the first iteration 

solution (Table 4.27) indicates this is required. We direct the second iteration stage 1 optimization to 

optimize between SVC placement at the next two most desirable buses, which are buses 97468 and 

97544. Thus, we provide voltage dip sensitivities only for these two buses (there was not much 

difference between the old and new sensitivities). The result of the second iteration stage 1 MIP 

optimization is given in Table 4.29. After validation, it was found that none of the contingencies had 
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any voltage dip problems with the two SVCs placed at buses 97455 and 974685. Given that the first 

iteration of stage 1 optimization resulted in sufficient voltage stability margin, and we have added Var 

resources in the second iteration of stage 1 optimization, there is no need to check voltage stability 

margin for this solution. And so the solution of Table 4.29 represents the final solution. 

Table 4.29 Result of second iteration stage 1 MIP optimization 

Contingency 

Bus Numbers Bus Names 
No 

From To From To 
kV 

SVC (pu MVAR) 
97568, 4GOSLIN 

(amount includes MIP 
1 solution) 

1 97463 97467 4OAKRIDG 4PORTER 138 2.65 

2 97478 97721 6JACINTO CHJC_SER 230 2.7 

3 97567 97714 6PORTER 6CHINA 230 
Not considered for  

MIP 2 

4 97691 97717 8CYPRESS 8HARTBRG 500 
Not considered for  

MIP 2 

5 97714 97716 6CHINA 6SABINE 230 2.7 

6 97714 97721 6CHINA CHJC_SER 230 2.85 

7 53526 97513 CROCKET7 7GRIMES 345 2.1 

 

To illustrate the effect of the second iteration stage 1 optimization, Figure 4.5 and Figure 4.6 

compares bus voltages at buses 97455, 97459, 97463, 97468, and 97544 under contingency 1 for the 

case of no SVC and the case of the SVC solution from the second iteration stage 1 optimization, 

showing significant improvement. Voltage recovery time for the buses in Figure 4.6 is within 20 

cycles. 

                                                        
5 It is to be noted that the Bus 97544 also has good sensitivities that are almost close to Bus 97468’s. Buses 

97459, 97463, 97457, 97464 do form another group of buses that have a very good influence on bus voltages to 
solve the voltage dip problems. So any other technical or non-technical constraint could well make the planner 
interested in these buses that are capable of solving the transient dip problems at an equal or only slightly higher 
cost. 
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Figure 4.5 Bus voltages under contingency 1 without any SVCs 

 

 
Figure 4.6 Bus voltages under contingency 1 for SVC solution of 2nd iteration optimization 
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Figure 4.7 shows the improved voltage profile at Bus 97455 under contingency 1 after 

implementing the SVC solution from the second iteration of stage 1 optimization. Figure 4.7 also 

shows the output of the two SVCs. The SVC peak output at bus 97455 is about 290 Mvar, and that of 

bus 97468 is about 270 Mvar. 

 
Legend: Pink – Voltage profile before SVC placement; Green – Voltage profile after SVC placement; 

Dark Blue – SVC output at Bus 97455; Light Blue – SVC output at Bus 97468 
Figure 4.7 Bus 97455 voltage profile under contingency 1 with final SVC allocation 

4.7 Summary 

 The first part of this chapter performed a study to determine least cost reactive resources to 

satisfy constraints imposed only by voltage instability for a subsystem of a large interconnection. 

Critical contingencies inside the subsystem that cause voltage instability were considered. In this 

work, only static Var solutions were considered. The final result was given in Table 4.16, repeated 

below for convenience, and cost 2.665 M $ under the cost assumptions used for this study. 
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Bus No. Bus Name Base KV Amount of p.u. Q injection 

    

97457 4LONGMIR 138 1.5 

97455 4METRO2 138 1.5 

97464 4PANORAM 138 1.5 

97544 4ALDEN 138 1 

 

The second part of this chapter performed a coordinated planning for static and dynamic Var 

sources was done for the same subsystem, to plan against voltage instability problems as well as 

transient voltage dip issues. Critical contingencies inside the subsystem that cause voltage instability 

and/or that cause transient voltage dip problems were considered. The transient dip problems were so 

severe that the solution required a lot of SVC, which meant there was no role for capacitors. Several 

transient voltage profile plots under different contingencies were shown to present the effectiveness 

of the solution. The final solution was attained through a successive MIP planning algorithm. A 

second iteration of the stage 1 MIP optimization was needed as some of the contingencies still had 

voltage dip problems following the first iteration stage 1 solution implementation. Table 4.30 below 

shows the final solution for the coordinated planning problem. No capacitors6 are required. The total 

cost is 32.25 M $ under the cost assumptions used for this study. 

Table 4.30 Final Solution 

Bus Base KV 
Amount if (p.u) of B (or 

p.u. Q injection) 

 97455  4METRO2 138 3.0 

 97468  4GOSLIN 138 2.85 

 
 
 
 
 

                                                        
6 There can be cases, when the required SVC to mitigate the transient dip problems might be less, and they 

might still not solve the steady state voltage stability margin violation problems. So in that case Capacitors can 
be an effective addition to the solution. 
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CHAPTER 5 CONCLUSION 

5.1 Conclusion 

This project developed a practical approach to plan an optimal mix of static and dynamic reactive 

power controls against voltage stability related issues. The work has been motivated by the need for 

better planning tools that address the alarming increase in concerns shown by the utility around the 

world to counteract the major power outages caused by voltage instability. The long term planning 

tool devised in this work uses a power-flow based static tool to calculate post-contingency steady 

state voltage stability margins for all the identified critical contingencies. For system dynamic studies, 

PSS/E time-domain simulation tool is used to analyze the transient voltage dip characteristics after 

few selected critical system faults leading to severe contingencies. The results and sensitivity 

information from both the study is used together for the coordinated planning problem. The entire 

planning process was implemented on the Eastern interconnection system with the results presented 

in the previous chapter. 

The following presents important features of the entire Planning tool against voltage instability:  

1. Mature MIP software packages such as CPLEX are used that can accommodate larger 

candidate locations for planning. 

2. The method is very effective in dealing with voltage stability requirements under multiple 

contingencies; which include contingencies that create both static as well as dynamic 

stability problems. 

3. It is only during contingency analysis that we must deal with the full size of the power 

system. Since the optimization formulation is linear that uses linear sensitivity 

information, it is fast, and provides good solutions for large-scale power systems that can 

be validated. 
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4. The method provides a systematic way to determine the optimal mix of static and 

dynamic VAR resources. 

5. The total cost of reactive power control devices can be reduced by the proposed 

simultaneous optimization formulation. 

The specific contributions of this research are summarized as follows: 

1. Implementation of a systematic algorithm of coordinated planning of static and dynamic 

VAR resources developed in the work [38] on a larger real time system satisfying the 

performance requirements of voltage stability margin and transient voltage dip. This 

work is the first of its kind where a coordinated planning proposal has been applied to a 

large-scale system. Simulation results on a large-scale system indicate that the algorithm 

is effective to determine the optimal mix of static and dynamic VAR resources. The total 

installation cost of reactive power control devices can be reduced using the proposed 

simultaneous optimization formulation. 

2. The coordinated planning tool developed is a semi-automated one, in that the interface 

between the two programming tool, namely PSS/E and Matlab requires manual 

intervention. The entire planning work described for steady state in the first half of 

chapter 4 is fully automatic, in that once the base case is input, system analysis, 

sensitivity calculations, and subsequent steady state planning is done automatically. 

3. As a by-product to this planning tool, a data format conversion code was developed that 

converts PTI PSS/E ‘.raw’ data format into a format understandable and useable by 

Matlab. 

5.2 Scope for Improvements 

1. Consideration of Hopf Bifurcation: This research uses ODE (Ordinary differential 

equation) model for power system representation. If DAE (differential algebraic equation) 
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model is used for power system representation with the algebraic equations for machine, 

governor, excitation system models etc., then the sensitivity information from this new 

jacobian of the system will be useful to plan against Hopf bifurcation.  

2. Consideration of operational constraints: Operational constraints or security measures 

like line loading, Bus voltage magnitude can also be considered for planning. Right now, 

the algorithm used in this work does consider Bus voltage magnitude as a constraint for 

planning while fixing the maximum amount of compensation that can be done at any Bus. 

But a better implementation of this feature would be to obtain the sensitivities of the Bus 

voltage magnitudes with respect to the compensation at any bus and use this as one of the 

constraints while planning. The same holds true for including any other system stability 

consideration for planning. 

3. Consideration of other reactive control devices: The planning algorithm can be extended 

to include other reactive power control devices such as STATCOM, UPFC etc. The only 

requirement is the exact modeling of these devices for the study, and calculation of 

sensitivity information for performance indices with respect to these devices. 
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